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PREFACE

This book is an outgrowth of lectures on the theory of probakility
which the author has given at Stanford University for a number of
years. At first a short mimeographed text covering only the g\Iénféntary
parts of the subject was used for the guidance of students.) As time
went on and the scope of the course was gradually enlarged;the necessity
arose of putting into the hands of students a more e%aBorate exposition
of the most important parts of the theory of probdbility. Accordingly
a rather large manusecript was prepared for this purpose. The author
did not plan at first to publish it, but students and other persons who had
opportunity to pernse the manuseript were go}p’ersuasive that publication
wags finally arranged. OO

The book is arranged.in syeh, 81 ;ﬁgyf%é the first part of it, consisting
of Chapters I o XTI inclusive, is acedgsible to a person without advanced
mathematical knowledge. Chaptérs VII and VIII are, perhaps, excep-
tions. The analysis in Chapter VII is rather involved and a better way
to arrive at the same results ‘would be very desirable. At any rate, a
reader who dees not lxsg‘e ‘time or inclination to go through all the
- intricacies of this analysis may skip it and retain only the final results,
found in Section ¥ Chapter VIII, though dealing with interesting
and historically ifiportant problems, is not important in itself and may
without lToss be! omitted by readers. Chapters XIII to XVI incorporate
the results ofmodern investigations. Naturally they are more complex
and requitesmore mature mathematical preparation.

Thr@&éppendicea are added to the book. Of these the second is by
far(the most important. It gives an outline of the famous Tshebyshefi-
Markoff method of moments applied to the proof of the fundamental
theorem previously established by another method in Chapter XIV.

No cne will dispute Newton’s assertion: “In scientiis addiscendis
- exempla magis prosunt quam praecepta.” But especially is it so in the
theory of probability. Accordingly, not only are a large number of
illustrative problems discussed in the text, but at the end of each chapter
a selection of problems is added for the benefit of students. Some of
them arc mere examples. Others are more difficult problems, or even
important theorems which did not find a place in the main text. In alt
such cases suffieiently explicit indications of solution (or proofs) are given,

v



vi PREFACE

The hook does not go into applications of probability to other sciences.
To present these applications adequately another volume of perhaps
larger size would be required.

No ene is more aware than the author of the many imperfections in
the plan of this book and its execution. To present an entircly satis-
factory book on probability is, indeed, a difficult task. But even with
all these imperfections we hope that the book will prove useful, especially
since it contains mueh maferial not to be found in other books on the

same subject in the English language. O
_ J. V. Usp,m\sm
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INTRODUCTION TO
MATHEMATICAL PROBABILITY

INTRODUCTION S

N

Quanio enim minus rationds ferminis campfe?.‘.bﬁd‘i posse
videbatur, quae foriuile suni alque tnceriavianio admira-
bilior ars censebifur, cut ista quoqueSubjacent.—

Ong. /BgycexNs, '

Da rmiocimiis in lude aleae.

1. It is always difficult to describe with adequate congisenegs and
elarity the object of any particular science; 1ts\\neth0ds, preblems, and
results are revealed only gradually. Bu, ﬂ\one must define the scope
of the theory of probability the answet\May be this: The theory of
probability is a branch of applied mathematies dealing with the effects of
chance. Here we encoﬁ’ﬁ’t‘ﬁrgfﬁé‘%l'?fd‘y@ﬁ&ﬂﬂe,” which is often used in
everyday language but with rathcr ndefinite meaning. To make clearer
the idea conveyed by this word, we shall éry first to clarify the opposite
idea expressed in the word\“necessity.”_ Necessity may be logical or’
physical. The statem n‘Q “'The sum of the angles in a triangle is equal
to two right angles’, 9} a logical necessﬂ:y, provided we agsume the
axioms of Euchdean «geometry; for in denying the conclusion of the
admitted prermses, we violate the logical law of contradiction.

The foliowm} statements serve to illustrate the idea of physical
. necessity:, :

A plece of iron falls down if not supported.

Watér boils if heated to a sufficiently high temperature,

< A‘ die thrown on a board never stands on its edge.

The logical strueture of all these statements is the same: When certam
conditions which may be tcrmed “causes” are fulfilled, a definite effect
occurs of necessity. But the nature of this kind of necessity is different
from that of logical necessity. The latter, with our organization of -
mind, appears absclute, while physical necessity is only a result of
extensive induction. 'We have never known an instance in which water,
heated to a high temperature, did not boil; or a piece of iron did not fall
down; or a die stood on its edge. For that reason we are led to believe
that in the preceding examples (and in innumerable similar instances)

the effect follows from its ““cause’” of necessity.
1



2 INTRODUCTION TO MATHEMATICAL PROBABILITY

Instead of the term “physical nccessity’” we may introduce the
abstract idea of ‘“natural law.” Thus, it 1s a “natural law’’ that the
piece of iron left without support will fall down. Natural laws derived
from extensive experiments or observations may be called ““empirical
laws" to distinguish them from theoretical laws, In all exact sciences
which have reached a high degree of development, such as astronomy,
physics, and chemistry, scientists endeavor to build up an abstract and
simplified image of the infinitely complex physical world—an image
which can be described in mathematical terms, With the helpy of
hypotheses and semec artificial concepts, it beeomes possible e, derive
mathematically eertain laws which, when applied to the world‘ofreality,
represent many natural phenomena with an amazing degree of accuracy.
It is true that in the development of the sciences it sometimes becomes
nacessary to recast the previously accepted image of the’physical world,
but it is remarkable ihat the fundamental theor®dital laws even then
undergo but slight modification in substance or jhderpretation.

The chicf cndeavor of the exact seicnces #§'the discovery of natural
laws, and their formulation is of the greatest i}\portance to the promotion
of human knowledge in general and to jshi;’éxteﬁsion of our powers gver
natural phenomena, RN -

Arc the events caused "By -ARE .‘t]s?'f“H%-a"rgﬁgolute]y certain? No,
but for ali practiceal purposes th,efyfomay be considered ag certain, It is
possible that one or anothe™f the natural laws may fail, but such
failure would constitute %‘Téll ““miracle.” However, granted that the
possibility of miracles is e0usistent with the nature of scientific knowledge,
actually this possibilitihnmay be disregarded.

2. If the preceding explanations throw a faint light upon the concept
of necessity, it »Ow remains to illuminate by comparison some charac-
teristic featurédinherent in the coneept of ““ chance.”  To say that chance
¢ a denial (h'ecessity is too vaguo a statement, but examples may help
u:s}o understand it better. ~

I, ?fﬁié ig thrown upon a board we are cerfain that one of the six faces
“51'11 furn up. But whether ¢ parlvenlar face will show depends on what
we call chance and cannot be predicted. Now, in the act of tossing a
die therc are some conditions known to us: first; that it is nearly cubic
in shape; further, if it is a good die, its material is as nearly as possible
homogeneous. Begides these known conditions, there are other factors
influencing the motion of the die which are eompletely inaceessible to our
knowledge. First among them are the initial position and the impulse
imparted by the player’s hand. These depend on an “act of will’—an
- agent which may act without any recognizable motivation—and therefore
they are outside the domain of rational knowledge. Seccond, supposing
the initial conditions known, the complexity of the resulting motion
‘defies any possibility of foreseeing the final result.
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Another example: If equal numbers of white and black balls, which do
not differ in ary respect except in color, are concealed in an urn, and we
draw one of them blindly, it is certain that its color will be either white
or black, but whether it will be black or white we cannot predict: that
depends on chance, In this example we again have a sct of known
conditions: namely, that balls in equal numbers arc white and black, and
that they are not distinguishable except in color. But the final result

-depends on other conditions completely outside our knowledge. First,
we know nothing about the respective positions of the white and black
balls; second, the choice of one or the other depends on an act of ‘Will.

It is an ohserved fact that the numhers of marriages, div orves, \oirths,
deaths, smmdes, etc., per 1,000 of population, in a country(; With nea.rly
settled living coudltmm and during not too long a periogh \of ‘time, do not
remain constant, but oscillate within comparatively nérrow limits. For
a given year it is impossible to predict what will b,{»fthmr numbers: that
depends on chance. For, besides some knownleoiditions, such as the
level of prosperity, sapitation, and many othert‘thmgs here are unnum-
bered facto%mpletely outside our know ledge :

Many other examples of a similar kindvan be cited to illustrate the
notion of chance. They all possess & ¢ommon logieal structure which
can be deseribed as foumsdﬁpﬂmgﬁ& ﬂow materialize umg.!er certain
known or ““fixed’’ conditions, bug not Il(‘Cl’“-‘sSa.rlly, for under the game fixed
conditions other events B, (™D, . . . are also possible. The mate-
rialization of A depends aléovipon other factors completely outside our
control and knowledges \Conscquently, whether 4 will materialize or
not under such circuflétanée's ‘cannot be foreseen ; the materialization of
A is duc to,chancey oF, to express it concisely, A is a contingent event.

3. The idea of\Hecessity is closely related to that of certainty. Thus
it is “certain/that everybody will die in the due course of time. In
the same ,t‘{sziy"thc idea of chance is related to that of probabz’l'ity or likeli-
hood. T\everyday language, the words probabiiity and “probable”
are used with different shades of meaning. By saying, “Probably it will
réin) tomorrow,” we mean that there are more signs indicating rainy
wehther than fair for tomorrow, On the other hand, in the statement,
“There is little probability in the story he told us,” the word ‘“‘proba-
bility’" is used in the sense of credibility. But henceforth we shall use
the word as equivalent to the degree of credence which we may place
in the possibility that some contingent event may materialize. The
“degree of eredence’” implies an almost instinefive desire to compare
probabilities of different events or facts. That such comparison is
possible one can gather from the following examples:

I live on the second floor and can reach the ground either by using
the stairway or by jumping from the window. Either way I might be
injured, though not necessarily, How do the probabilities of being

—
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injured compare in the two cases? Everyone, no doubt, will say that
the probability of being injured by jumping from the window is ““greater”
than the probability of being injured while walking down the stairway.
Such universal agreement might be due either to personal experience or
merely to hearsay about similar experiences of other persons,

An urn contains an egual number of white and black balls that are
similar in all respects except color. One ball is drawn. It may be either
black or white. How do the probabilities of these two cases compare?
One almost instinctively answers: “They are equal.” ~

Now, if there are 10 white balls and 1 black ball in the urn, what.
about the probabilities of drawing a white or a black ball? Again onc
would say without hesitation that the probability of drawirg @ white ball
is greater than that of drawing a black ball. N

Thus, probability appears to be something which admits of compari-
song in magnitude, but so far only in the same way\gs\in the intensity of
pain produced by piercing the skin with needles.

But it is a noteworthy observation that,mjen instinctively try to
characterize probabilities numerieslly in a pai%d and unscientific manneor.
We read regularly in the sporting sectiohdvof newspapers, predictions
that in a eoming race a certain borse has two chances against one to
win over another horse, or t-hat«fd]lﬁ;*tslﬂhhmwdrgum football teams are as
10 to 7, ete. No doubt expertsylld’ know much about the respective
horses and their riders, or the.comparative strengths of two competing
football teams, but their nuférical estimates of chances have no other
merit than to show the @n’an tendency to assign numerical values to
probabilities which most\ﬁkely eannot be expressed in numbers,

It is possible thatya“man endowed with good common sense and ripe
judgment can wei’g\h all available evidence in order to compare the
probabilities ofﬁl\e various possible outcomes and to direet his actions
aceordingly ‘\s\iaé to secure profit for himself or for socicty. But precise
conclusiqnifg ean never be attained unless we find 2 satisfactory way to
represert or to measure probabilitics by numbers, at least in some cases.

4. As in other fields of knowledge, in attempting to measure proba-
bilitics by numbers, we encounter difficulties that cannot be avoided
except by making certain ideal assumptions and agreements. In
geometry (we speak of applied and not of abstract geometry), before
explaining how lengths of rectilinear segments can be neasured, we must
first agree on criteria of equality of two segments. Similarly, in dealing
with probability, the first step is to answer the guestion: When may two
contingent events be considered as equally probable or, to use & more
common expression, equally likely? From the stafements of Jacob
Bernoulli, one of the founders of the mathematical theory of probability,
one can infer the following criterion of equal probability:
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Two contingent events are considered as equally probable if, after taking
into consideration all relevand evidence, one of them cannot be expected in
preference o the other.

_ Certainly there is some obscurity in this criterion, but it is hardly
possible to substitute any better one. To be perfectly honest, we must
admit that there is an unavoidable obseurity in the principles of all the
sciences in which mathematical analysis is applied to reality.

The application of Bernoulli’s criterion to particular cases is beset
with difficultics and requires good common sense and keen judgment.
There is much truth in Laplace’s statement: ““La théorie des probabilités
n'est au fond que le bon sens réduit au caleul.” RAY.

To elucidate the nature of these difficulties, Jet us copsiaer an urn
filled with white and black balls, but in unknown propogtien. The only
evidence we have, namely, that there are both white @hd black balls in
the urn, in this case appears insufficient for any: conclusion sbout the
respective probabilities of drawing a white or & blaek ball. We instine-
tively think of the numbers of the two lcgndxs\~6f balls, and, being in
ignorance on this point, we are inclined tqsuspend judgment. But if we
know that white and black balls are equazlx in number and distributed
without any sort of regularity, th‘is,{kiiowledge appears sufficicnt to
assume the equality of wthalprahighiliticsrgfidrawing a white or & black
ball. It is possible that, perhaps:’l,iﬁconsciously, we are influenced by the
commonly kuown fact that if we repeatedly draw a ball out of the urn
many times, returning theball each time before drawing again, the white
and the black halls apgéé.r in nearly equal numbers.

If an urn contaihs 4 certain number of identical balls distinguished
from one another >by some characteristic signs, for example, by the
numbers 1, 2,3, - . , the knowledge that the balls are identical and
are distributedwithout regularity suffices in this case o cause us to
conclude th the probabilities for drawing any of the balls ghould be
considefb:d as equal. Again, in so readily assuming this conclusion we
may e influenced by the fact empirically observed (by ourselves or by
dthers) that in a long series of drawings, with balls being restored to
the urn after esch withdrawal, the balls appear with nearly the same
frequency.

An ordinary die is tossed. Should we consider the possible numbers
of points 1, 2, 3, 4, 5, 6 as equally probable? To pronounce any judg-
ment, we must know something about the die. If it is known that the
die has a regular cubic shape and that its material is homogeneous, we
readily agree on the equal probabilities of all the numbers of points
1, 2,3, 4, 5, 6. And this a priorl conelusion, based on Bernoulli’s cri-
terion, agrees with the observed fact that each number of points does
appear nearly an equal number of times in a long series of throws, if the
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die is a good one. However, if we only know that the die has a regular
shape, but not whether or not it is loaded, it is only sensible to suspend
judgment.

These examples show that before trying to apply Bernoulli’s er 1’5( rion,
we must have at our disposal some evidence the amount of which ramwt
be determined by any general rules. It may be also that the reason a
priori must be supplemented by some empirical cvidenee. In some
cases, lacking sufficient grounds to assert equal probabilities for two
events, we may assume them as a hypothesis, to be kept until for €ome
reason we are forced to abandon it. . \

5. Besides the ticklish question: When are we entitled t@ “ohsider
events as equally probable? there is another fundamental mssumption
required to make possible the measurement of probabilities by numbers.

Events a1, as, . . . a, form an exhaustive set of q)ossmlhtlea under
ccrtain fixed conditions S, if at least one of them pst mnecessarily mate-
rialize. They are mutually cxclusive if any two of\them cannot material-
ize simultaneously. The fundamental assumpfion referred to consists in
the possibility of subdividing results consiftent with the conditions §
into a number of exhaustive, mutuallyt exclusne, and L,qually likely

events, or cages (a8 thLy are commonlgealled): ™
— www . dhr a’uhbral y.org.in
a1, ag, A

This being granted, the probalnht-y of any one of these cases is assumed
to be 1/n. ~\

An event A may 1na’ls@uallzc, in several mutually exclusive particular
forms: @, 8, . . . A; that is,'if A occurs, then one and only one of the
events o, 8, . . . A {Scc"urs also, and eonv crsely the oceurrence of one of
these events ncc@i_ates the occurrence of A. Thus, if A consists in
drawing an a\g;iirom a deck of cards, 4 may materialize in four mutually
exclusive formis: as an zce of hearts, diamonds, clubs, or spades.

Let amévent A4 be represented by its partlcular forms ai, @s, . . . Gw,
which, tégether with other events mir, @mys, . . . @. constitute an
exhustive set of mutually exclusive and equally likely cases consistent with
the conditions S. Eventsai,as, . . . anarccalled “casesfavorableto 4.7

Deﬁmtlon of Mathematical Probability, If, consistent with conditions
S, there are 1 exhaustive, mulnally éxclusive, and equally Likely cases, and
m of them are favorable to an event A, then the mathemaucal probability of
A is defined as the ratio m/n.

In drawing a card from a full deck there are 52 and no more mutually
exelusive and equally likely eases; 4 of them are favorahle for drawing an
ace; hence the probability of drawing an acc is 44, = 1{5.

From an urn containing 1¢ white, 20 black, and 5 red balls, one ball is
drawn. Here; distinguishing individual balls, we have 35 cqually likely
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cases. Among them there are 10, 20, and 5 casés, favorable respectively
{o a white, a biack, or a red ball.” Hence the probabilities of drawing a
white, & black, or a red ball are, respectively, 24, 44, and 4.

In the first example, ins tea(}if 52 cascs, we may consider only 13
cases according to the denominations of Thé cards. Thesc cases beng
regarded as equally likely, there is only one of them Tavorable to an
ace. The probability of drawing an ace is 3{5.; This observation makes

it clear that the subdivision of all possible results mto equally likely
cases can be done in various ways. To avoid contradictory estimations
of ilig"same probability we must always ohserve the following rules:

““Two events are equally likely if each of them can be repry
equal numbers of equally likely forms,

Two events are nof equally likely if they are represented by unequal
numbers of egually likely forms.

Thus, if two equally likely events arc each represented by different
numbers of their respective forms, then the Iatte\ ¢annot be considered as
equally likely.

Each card is charneterized by its denomlﬁatlon and the suit to which
it belongs. Noting denominations, we{distinguish 13 cases, but each
of these is represented by 4 new cases according to the suit to which the
card belongs.  Altogether. mhm;dﬂgen; ditheases recognized as equally
likely; hence, the above- mentmned 13 cases should be considered as
cqueally likely.

In connection with the definition of mathematical probability,
mention should be made\of an important pnnclple not always explicitly
stated. If

”}Gl, Ao, « v Qg 61, bg, e b_p

are all mutuéll\yn exclusive and equally likely cases consistent with
certain coﬁhtlons, and the indieation of the oceurrence of an event B

makes.cases by, ba, . . . bpimpossible, cases as, @i, . . . anstill should be;
considered as equally hkely To illustrate this principle, consider am
ufn Awith six tickets bearing numbers 1, 2, . . . 6. Two tickets are

drawn in succession. If nothing is known about the number of the first
ticket, we still have six possibilities for the number of the second ticket,
which we agree to consider as equally likely. But as soon as the number
~ of the first ticket becomes known, then there are only five cases left

concerning the number of the second ticket. According t?/z’e, above
prineiple we must consider these five cases as equally likely.

6. Probability as defined above is represented by a number contained
between 0 and 1. In the extreme case in which the probabiiity is 0, it
indicates the impossibility of an event. On the cqnfrary, in the other
extreme cage in which the probability is 1, the event 1s cerfain. When
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the probability is expressed by a number very near to 1, it means that
the overwhelming majority of cases are favorable to the event. On the
contrary, a probability near to 0 shows that the proportion of favorable
cases is small.

From our experience we know that events with a small probabil-
ity seldom happen, For instance, if the probability of an event is
1/1,000,000, the situation may be likened io the drawing of a white hall
from an urn containing 999,999 black balls and a single white one.
This white ball is practically lost among the majority of black ballsand
for all practical purposes we may consider its extraction impobsible
Similarly, the probability 999,999/1,000,000 may be conmdereé flom a
practical standpoint, as an indication of certainty. What. Jimit for
smallness of prebability is to be set as an indication of praetical impos-
sibility? Kvidently there is no general answer to this guestion. Every-
thing depends on the risk we can face if, contrar¥ o expectation, an
cvent with & small probability should oceur. Heneg, the main problem
of the theory of probability consizts in finding c&ég in which the proba-
bility is very small or very near to 1. Insj;eéd of saying, “The proba-
bility is very near ¢o 1, we shall say, ‘{gréat probability,” although,
of course, the probabﬂlty can never exceed 1.

7. The definition of math&mdbnduﬁ:h)’oablh‘lgnnn Sec. 5 is essentially
the classical definition proposed %y Jacob Bernoulli and adopted by
Laplace and almost all the jmportant contributors to the theory of
probability, But, since thg-niddle of the nineteenth century (Cournot,
John Stuart Mill, Venn), 9{3@ especm]ly in our days, the classical definition
hag been severely critigized. BSeveral attempts have been made to rear
up the edifice of ¢hie;Mmathematical theory of probability on quite a
differcnt definitipn\of mathematical probability. It does not enter into
our plan to crititize these mew definitions, but, in the opinion of the
author, manybf them are seli-contradictory. Modern attempts to build

FMp the theo,ry of probability as an axiomatic science may be intercsting
in thgméel”veq a8 mental exercises; but from the standpoint of applics-
tions,_fhe purely axiomatic science of probability would have no more
value than, for example, would the axiomatic theory of elasticity.

The most serious objection to the elassical definition is that it can
be used only in very simple and comparatively unimportant cases like
games of chance. ‘This objection, stressed by von Mises, Is in reality
not a new one, It is one of the objections Leibnitz made against Jacob
Bernoulli’s views concerning the possibility of applications of the theory
of probability to various important fields of human endeavor and not
merely to games of chance.

It is certainly truze that the classical definition cannot be dirvectly
applied in many important cases. But is it the fault of the definition
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or is it rather due to our ignorance of the innermost mechanisms which,
apart from chance, contribute to the materialization or nonmaterializa-
tion of contingent events? It seems that this is what Jacob Bernoulli
meant in his reply to Leibnitz:

Ohjiciunt primo, aliam esse rationem caleulorum, aliam morborum aut muta-
tionum aeris; illorum numerum determinatum esse, horum indeterminatum et
vagum. Ad guod respondeo, utrumque respectu cognitionis nostrae aequi poni
incertum et indeterminatum; sed quicquam in se et sua natura tale esse Hon
magis a nobis posse concipi, quam concipi potest, idem simul ab Auctore'naturae
creatum esse et non ereatum: gquaecumgue enim Deus fecit, eo ipso§ dimy fecit,
etiam determinavit.! < \,

8. A brilliant example of how the profound study of’a, sub]ect finally
makes it possible to apply the classical deﬁmtlon of mathematical
probability is afforded in the fundamental laws of genetlcs (a science of
comparatively recent origin, whose 1mportance\\no one can deny), dis-
covered by the Augustinian monk, Gregor Méndel (1822-1884). During
eight years Mendel? conducted prenmenﬁal work in crossing different
varieties of the common pea plant with e purpose of investigating how
pbairs of contrasting characters were inherited. For the pea plant there
are several pair pairs of suehm:ﬂbmﬁiﬂg} ehaxawtens: round or wrinkled seeds,
tallness or dwarfness, yellow or green pod color, ete. Let us concentrate
our attention on a definite pdir 0f contrasting characters, yellow or green
pod color. Peas with gréen pod color always breed true. Also some
peas with yellow eolor Qb}ays breed true, while still others produce beth
varieties. True breed.mg pea plants constitute two pure races: A with
yellow pod color/and B with green pod color, while plants with yellow
pods not breedlﬁg true constitute a hybrid race, C. Crossing plants of
the race A\mth those of the Tace B and planting the seeds, Mendel
obtained « a\ﬁrst generation F, of hybrids. Letting plants of the first
generauon selffertilize and again planting their seeds to produce the
sedondvgeneration Fy, Mendel found that in this generation there were
428 fellow pod plants and 152 green pod plants in the ratio 2.82:1.
In regard to-other contrasting characters the ratio of approximately 3:1
was observed in all cases. Later experimental work only confirmed
Mendel’s results. Thus, combined experiments of Correns, Tschermak,
and others gave among 195477 individuals of F,, 146,802 yellow pod
plants and 48,675 green pod plants, in the ratio 3.016:1.

1Ty understand the beginning of this statement see the translation from *‘ Ars

eonjoctandi’”’ in Chap. VI, p. 105, _ )
t Mendel’s results were published in 1865, but passed completely unnoticed until
in sbout 1900 the same facts were rediscovered by DeVries, Correns, and Tschermak.

Modern genetics dates from about this time.



10 " INTRODUCTION 10 MATHEMATICAL PROBABILITY

Mendel not only discovered such remarkabie regularities, but also
suggested a rational explanation of the observed ratio 3:1, which with
gsome meoedifications is aceepted even today. Bodies of plants and
animals are built up of enormous numbers of cells, among which the
reproductive cells, or gametes, differ from the remaining * somatic”
cells in some important qualities. Cells are not homogeneocus, but
possess a definite structure. In somatic cells there are found bodies,
called chromosomes, whose number is even and the same for the same
species. Fxactly half of this number of chromosomes is found in repro-
ductive cells. Chromosomes are supposed to be seats of hypothetical
“genes,” which are considered as bearers of various heritable chhraeters.
A chromosome of one purc race 4 bearing a character a differgfrom the
homologous chromosome of another pure race B bearing‘a tontrasting
character b in that they contain genes of different kinds. { 8ince characters
a and b are borne by definite chromosomes, the situition in regard to the
two characters ¢ and b is esactly the same as if\gametes of both races
contained just one chromosome, ILet us repre%n\ﬁ them symbolically by
® and ®. In the act of fertilization a pair of paternal and maternal
gametes conjugate and form s zygote, whith by division and growth
produces all cells of the filial generation®™® Certain of these cells become
the germ cells and are set apast doraghbriepmegion, by & complicated
process, of gametes, one half of whieh contain the chromosome of the
paternal type and the other half $hat of the maternal type.

According to this theor;;@'?i‘tl crossing two individuals belonging to
races A and B, zygotes 6fthe first generation F, will be of the type
©--&, and will produde’gametes, in equal numbers, of the types ©, ®.
Now if two individudld of F; (hybrids) are crossed (or one individual
self-fertilized as imbthe cases of some plants), one paternal gamete con-
jugates with c{ié\hmtemal, and for the resulting zygote there are four
possibilities;

LN 00 0—8 8—0 ®-8
These f)ossibilitics may be considered as equally probable, wheneo
the probabilities for an individual of the generation Fy to belong respec-
tively to the races 4, B, (" are 14, 14, 14. Similarly, cne easily finds that
in crossing an individual of the race 4 with one of the hybrid race C,
the probabilitics of the offspring belonging to A or € are both equal to Lg.

It is easy now to offer a rational explanation of the Mendelian ratio
3:1. In the case of pea plants, individuals of the race 4 and hybrids
are not distinguishable in regard to the color of their pods. Hence the
probability of the offspring of a hybrid plant having yellow pods is
34, while for the offspring to have green pods the probahility is 14.
When the generation F; consists of a great many individuvals, the theory
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of probabilisy shows that the ratio of the number of yellow pod plants to
the aumber of green pod plants is not likely to differ much from the ratio
3:1. In erossing plants of the race A with hybrids, the offspring, if
numerous, will contain piants of race 4 or C, respectively, in a proportion
which is not likely to differ much from 1:1. And this conclusion was
experimentally verified by Mendel himself.

9, If in the case of the Mendelian laws the profound study of the
mechanism of heredity together with hypothetical assumptions of, the
kind used in physics, chemistry, ete., paved the way for a rational
explanation of cbserved phenomena on the basis of the theory 'df*.proba-
bility, in many other important instances we are still unable(te reach the
same degree of scientific understanding., Stability of statistical ratios
observed in many cases suggests the idea that they should’be explained
on the basis of probability. For instance, it hes-beén observed that
the ratio of human male and female births isNyexrly 51:50 for large
samples, and this is largely independent of ..Qiﬁlatic conditions, racial
differences, living conditions in different couwiries, ete. Although the
factors determining sex are known, yebhsome complications not suffi-
ciently eleared up prevent estimation af ‘probabilities of male and female
births. N

In all instances of “fHe’ ﬂﬂ?ﬁ ) ihEaTY 5Bty of statistical ratios we

may bclieve that some day a way will be found to estimate probabilities
in such cases. Therefore ndany applications of the theory of probability
to important problems of @ther sciences are based on belief in the existence
of the probabilities yv}th which we are concerned. In other cases in
which the theory,.of probability is used, we may have grave doubts
as to whether thig'dcience is applied legitimately. The fact that many
applications of probability are based on belief or faith should not dis-
courage ud; for it is better to do something, though it may be not quite
re]iablg,zjtlﬁn nothing. Only we must not be overconfident about the
conclgsions reached under such circumstances.
Afer all, is not faith at the bottom of all scientific knowledge?
Ph)fsicist-s speak of electrons, which never have been seen and are known
only through their visible manifestations. Electrons are postulated
just to coordinate into a coherent whole a large variety of observed
phenomena. Is not this faith? It must be, for according to Paul
(Hebrews, 11:1), “Faith is the substance of things hoped for, the evidence
of things not seen.””

10. In concluding this introduction it remains to give a short account
of the history of the theory of prebability. Although ancient philoso-
phers discussed af length the necessity and contingency of things, 1t
spems that mathematical treatment of probability was not known to the
ancients. Apart from casual remarks of Galileo concerning the correct
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evaluation of chances in a game of dice, we find the true origin of the
science of probability in the correspondence between two great men of
the seventeenth century, Pascal (1623-1662) and Fermat (1601-1665).
A French nobleman, Chevalier de Méré, & man of ability and great
experience in gambling, asked Iascal to explain some seeming contradic-
tions between his theoretical reasoning and the observations gathered
from gambling. Pascal solved this difficulty and attacked another
problem propesed to him by de Méré, On hearing from Paseal about
these problems, Fermat became interested in them, and in their priwate
correspondence these two great men laid the first foundationgqu the
sclence of probability. Bertrand’s statement, “Les grandgshoths de
Pascal et de Fermat décorent le berceau de cette scieqqg’."\'cannot be
disputed. 2\

Huygens (1629-1695), a great Duteh scientist, .béc'ame acquainted
with the contents of this correspondence and, spurréd on by the new
ideas, published in 1654 a first book on probability, “De ratiociniis in
ludo aleae,” in which many interesting and ;@her diffieult problems on
probabilities in games of chance were golyed. To him we owe the
concept of “mathematical expectationl ‘6 important in the modern
theory of probability. .

Jacob Bernoulli (1654-1706) mibditdtlerhionothémnsubject of probability
for about twenty years and prepared his great book, ““Ars conjectandi,”
which, however, was not pul{ﬁshed until eight years after his death in
1713, by bis nephew, Nigholas Bernoulli. Bernoulli envisaged the
subject from the most geficral point of view, and clearly foresaw a whole
field of applications of the theory of probability outside of the narrow
circle of problems»rélating to games of chance. To him is due the
discovery of one/f the most important theorems known ss *“Bernoulli’s
theorem.” ()

The nexf great successor to Bernoulli is Abraham de Moivre (1667—
1754), }Qfo’ée most important work on probability, “The Doctrine of
Chajrees,” was first published in 1718 and twice reprinted in 1738 and
in 1756. De Moivre does not contribute much to the principles, but this
work is justly renowned for new and powerful methods for the solution
of more difficult problems. Many important results, ordinarily attrib-
uted to Laplace and Poissan, can be found in de Moivre's book.

Laplace (1749-1827), whose contributions to celestial mechanics
assured him everlasting fame in the history of astronomy, was very
much interested in the theory of probability from the very beginning of
his scientific career. After writing several important memoirs on the
subject, he finally published, in 1812, his great work “Théorie analytique
des probabilités,” accompanied by a no less known popular exposition,
“Tssai philosophique sur les probabilitds,” destined for the general
educated public. Laplace’s work, on sccount of the multitude of new
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idcas, new analytic methods, and new results, in all fairness should be
regarded as one of the most outstanding contributions to mathematical
literature. It exercised a great influence on later writers on probability
in Europe, whose work chiefly consisted in elucidation and development
of topics contained in Laplace’s book.

Thud in European countries further development of the theory of
probability was somewhat retarded. But the subject took on important
developments in the works of Russian mathematicians: Tshebysheff
(1821-1894) and his former students, A. Markoff (1856-1922) and{A.
Liapounoff (1858-1818). QCastelnuovo in his fine book ‘“‘Calcolgndelle
probabilitd’’ rightly regards the contributions to the theory of prokability
due to Russian mathematicians ag the most important sincesthe’ time of
Laplace. O

At the present time interest in the theory of probability is revived
everywhere, but again the most outstanding recent¢ontributions have
been made in Russia, chiefly by three promineet mathematicians: 8.
Bernstein, A, Khintchine, and A. Kolmogoroff, /)"

In closing this introduction it seems pm\per to quote the closing
words of the “Essai philosophique sur les Prebabilités™:

®

7 %G

On voit par cet Essal, que 1a fhéorie des probabilités n’ est au fond, que le bon
gens réduit Eu caleul: ellt’a%gﬁ’ égg?gclfe%%éeey oxal ﬁ?ude, ce que les ésprits justes
sentent par une sorte d’instinect, sgns qu'ils puissent souvent s’en rendre compte.
Elle ne laisse rien d’arbitraire déos le choix des opinions et des partis & prendre,
toutes les fois que 'on peut,@gon moyer, déterminer le choix le plus avantageux.
TPar la, elle devient le supﬁgment le plus heureux, & l'ignorance et 4 la faiblesse
de ésprit humain. §i{l’en considére les méthodes analytiques auxquelles cette
théorie a donné naiesahce, la vérité des principes qui lui servent de base, la
logique fine et délieate qu’ exige leur emploi dans la solution des problémes, les
(@4tilité publique qui s'appuient sur elle, et I'extension qu'elle a
“peut regevoir encore, par 800 application aux guestions les plus
la Philosophie naturelie ¢f des sciences morales; si Yon observe
mémes qui ne peuvent étre soumise au caleul, elle
firs qui puissent nous guider dans nos jugements,
des illusions qui souvent nous égarent; on verra
nos méditations.

établissemen
recue et quie
impnrtan@és de
ensuiiﬁe,'};ﬁe dang les ehoses
dobme’les apergus les plus s
et quelle apprend A se garantir
qu’il n’est point de seience plus digne de
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CHAPTER I

COMPUTATION OF PROBABILITIES BY DIRECT '
ENUMERATION OF CASES

1. The probability of an event can be found by direct application
of the definition when it is possible to make a complete enumeration® of
all equally likely cases, as well as of those favorable to that event\./Here
we shall consider a few problems, beginning with the simplest, t0 ilustrate
this direct method of evaluating probabilitics. N

Problem 1. Two dice are thrown. What is th,e:pmbabi]ity of
obtaining a total of 7 or 8 peints? \

Solution. Suppose we distinguish the dice by«the numbers 1 and 2.
There are 6 possible cases as to the number p.f\hoints on the first dic;
and cach of these cases can be accompanied by any of the 6 possible
numbers of points on the second die. Hence, we can distinguish alto-
gother 6 X 6 = 36 different cascs. Prpﬁfidéd the dice are ideally regular
in shape and perfectly h"mmﬂﬂ%ﬁﬁé@'ﬁrgﬂﬂd reason to constder
. these 86 cases as equally likely, andiwe shall'so consider them.

Next, let us find out how many cases are favorable to the total of
7 points, This may happen-only in the following ways:

First ]3@ N Second Die
N 6 .
41 )
A\ X

WD 8 4
PR 3
. \ 5 2
..s'\ 6 1

Likewise,;}df & points:

\ b First Die Hecond Die
2 6
3 3
4 4
5 3
6 2

That is, out of the total number of 36 cases there are 6 cases favorable
to 7 points and 5 cases favorable to 8 points; hence, the probability of
obiaining 7 points is 84¢ and the probability of obtaining 8 points is 24s.

2. Problem 2. A coin is tossed three times in succession. What
'is the probability of obtaining 2 heads? What is the probability of
- "obtaining tails at least once? '

' 14
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Solution. In the first throw there are two possible cases: heads or
tails. And if the coin is unbiased (which we assume is true) these two
cases may be considered as equally likely. In two throws there are
2 X 2 = 4 cases; namely, both of the two possible cases in the first toss
can combine with both of the possible eases in the second. Similarly,
in threé throws the number of cases will be 2 X 2 X 2 = 8. To find
the number of cases favorable to obtaining 2 heads, we must consider
that this can happen only in three ways:

N\
Heads IMeads Tails .
Heads Tails Heads A
Tails Heads Heads a

The number of fsvorable cases being 3 the pmbabzhﬁy' of obtaining
two heads is 34.

To answer the second part of the question, wN obser»e that there is
only one case when tails does not turn up. Theéxefore, the number of
cases favorable to obtaining tails at least offee”is 8 — 1 7, so that
the required probability is 74. '\

- 3. Problem 3. Two cards are drfmn from a deck of well- qhuﬂied
cards. What is the probability that both the extracted cards are
© aces? WOWW dbraul}bl AT org.in

Solution. Binece there are 52%car g in the deck, there are 52 ways
of extracting the first card. g ~After the first card has been withdrawn, .
the second extracted card m@y be one of the remaining 51 cards. There-
fore, the total number f\Ways to draw two cards is 52 X:51.  All these
cases may be considered as cqually likely.

To find the nufibér of cases favorable to drawing aces, we observe
that there are d\akes; therefore, there are 4 ways to get the first ace.
After it haxiien extracted, there arc 3 ways to get a second ace. Hence,

the fotal mumber of ways to draw 2 aces, is 4 X 3, and the requitred
probahility is:
O 4x3 _ 1 1

52X 51 1317 221

Problem 4. Two cards are drawn from a full pack, the first card
being returned to the pack before the second is taken. What is the
probability that both the extracted cards belong to a specified suit?

Solution. There are 52 ways of getting the first card. For the
second drawing, there are also 52 ways, because by returning the first
_extracted card to the pack, the original number was restored. Under
‘guch circumstances, the total number of ways to extraet two cards is
52 X 52. Now, because there are 13 cards in a suif, the number of
cases favorable to obtaining two cards of a spemﬁed suit is 13 X 13,

[
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Therefore, the required probability is given by:

13Xx13 _1X1 _ 1
B2 X562 4x4 16

4, Problem 5. An urn contains 3 white and 5 black balls. One
ball is drawn. What is the probability that it is black? :

Solution. The total number of balls 1s 8. To distinguish them, we
may imagine that they are numbered. As to the number on the ball
drawn, there are 8 possible cases that may reasonably be consideredhas
equally likely. Obviously, there are 5 cases favorable to the bl@&k color
of the ball drawwn. Therefore, the required probability is 3§, ™

By a slight modification of the last problt m, We come to the following

N
7

}tercstmg situation: {
Y/ Problem 6. The contents of the urn are the same a.& 1 the foregoing
problem. But this time we suppose that one ball ig‘deawn, and, s color
unnoted, laid aside. "Then another ball is drawn,\and we are required to
find the probability that it is black or white. ,

Solution. Buppose again that the ballg a\re numbered, so that the
white balls bear numbers 1, 2, and 3; and’t]ie black balls bear numbers
4,5,6,7,8 Obviously, there are 8 wxyb to get the first ball, and what-
ever it is, there remain only ¥rwapsatt tg@‘ﬁytbﬁgamond ball. The total
number of equally likely cases is 8% 7 = 56.

It is a little more difficult{te find the number of cases favorable to
extracting a white or blaclg‘ba}ll in the second drawing. Suppose we are
interested in the white color of the second ball. I the first ball drawn is
a white ome, it may btar one of the numbers 1 to 3. Whatever this
number is, the secon@’ball, if it is white, can bear only the two remaining
numbers. Thergfore, under the assumption that the first ball is a white
one, the numbérof favorable cases i3 3 X 2 = 6.  Again, supposing that
the fiest ball'drawn is black, we have 5 possibilities as to its number, and,
corresp(}ndmg to any one of these possibilities, there are 3 possibilities
as t@«ﬁhﬁ number of the white ball to be taken in the sccond drawing,
so that the number of favorable cases now is 5 X 3 = 15. The number
of all favorable cases is 6 4+ 15 = 21. The required probability for
the white ball is 214g = 34. In the same way, we should find
that the probability for the black ball is 5¢. It is remarkable that
these two probabilitics are the same as if only a single ball had been
drawn.

The gituation is quite different if we know the eolor of the first ball.
Suppose, for instance, that it is white. The total number of equally
likely cases will then be 3 X 7 = 21; and the number of cases favorahle
to getting another white ball is 3 X 2 = 6, so that the probability in
this casc iy 24,
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This last example shows clearly how much probability depends upon
a given or known set of conditions.
. b. Problem 7. Three boxes, identical in appearance, each have two

\/ecviran vers.  The first box contains a gold eoin in each drawer; the second

contains a silver coin in each drawer; but the third contains a gold coin
in one drawer and a silver coin in the other. (z) A box is chosen at ran-
dom. What is the probability that it contains coins of different metals?
(b} A box is chosen, one of its drawers opened, and a gold coin found.
What is the probability that the other drawer contains a silver coifi?®

Solution. (a) Binee nothing outwardly distinguishes one bax from
the other, we may recognize three equally likely cases, and amung them
is only one case of a box with coing of different metals. Therefore, we
estimate the required probability as 14. N

(b) As to the second question, one is tempted to{reason as follows:
The fact that a gold coin was found in one drawer leaves only two
possibilitics as to the content of the other drawetynamely, that the coin
in it is either gold or silver. Hence, the proﬁébility of a silver eoin in
the scecond drawer seems to be 14. Butthis reasoning is fallacious.
It is true that, when the gold coin is fogﬁf;i'{n one drawer, there are only
two possibilities left as to the contentiof the other drawer; but these
possibilities cannot be Q\gggs&%qgeiﬁﬂg%l%qgg i, likely. To see this point
clearly, let us distinguish the drawers of the first box by the numbers 1 .
and 2; those of the second bgx, by the numbers 3 and 4: finally, in the
third box, 5 will d13t1ngu1hh$he drawer containing the sﬂver coin, while
6 will represent the draﬁgr with the gold coin.

Instead of three equ ly likely cases:

g'\ " box1, box?2, box3
I
we now havesixcases:

AV drawers 1, 2; drawers 3, 4; drawers 5, 6,

whiQh,'%th reference to the fundamental assumptions, must be con-
siflerad as equally likely. If nothing were known about the contents
of the drawer which has been opened, the number of this drawer might be
either 1, 2, 3, 4, 5, or 6. But as soon as the gold coin is discovered in it,
cases 3, 4, and 5 become impossible, and there remain three equally likely
assumptions a8 to the number of the opened drawer: it may be either 1 or
2 or 6. That leaves three cases, and in only one of them, namely, in
case 6, will the other drawer contain a silver coin; Thus the answer
to the second question (b) is 14.

8. In the preceding problems the enumeration of cases did not
present any difficulty. We are now going to discuss a few problems in
which this enumeration is not so obvious but ean be greatly simplified
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by the use of well-known formulas for the number of permuta,tlons,
arrangements, and combinations.
" Let m distinct objects be represented by the letters @, b, ¢, . . . L
Usmg all these obgent% we can place them in different orders and form
“permutations.” For instance, if there are only three letters, a, b, and ¢,
all the possible permutations are: abe, ach, bac, bea, cab, cha,—6 different
permutations out of 3 letters. In general, the number of permutations
P.. of m objects iz expressed by
P,=1:2-3++ - m=m! \
If n objects are taken out of the total number of m objentq\'tb Torm
groups, attention being paid to the order of objects in each greup, then
these groups arc called “‘arrangements.” For instance, l:iy Haking two
letters out of the four letfers a, b, ¢, d, we can form the following 12
armngementa }

ab be cn da / \\ J
e be b db &3"
ad bd od deyz\SJ

A

Denoting by the symbol A7 the uumber of arrangements of m
objects taken n at a time, the follo(l\inm o formula holds:
Ll

ib Lar_y org.in

A“—'m(m-—l)(mHQ) {m—n+1).

Again, if we form groups ({}i}@ objects taken out of the total number of
m objects, this time payifif no attention to the order of objects in the
_groﬁ'p, we form ‘“‘comthinations.” For instance, following are the
different combination€oUt of 5 objects taken 3 at a time: -

K722 abc wbd abe acd aee
\\ ade bed bee bde cde

In gencml\the number of combinations out of m objects taken n
at a tlme\whlch ig usually denoted by the symbol €%, is given by

\\’” mm —(m—2) - (m—n+1)

7 —
G 1-2-3-+-n

Tt is useful to rceall that the same expression may also be exhibited
as follows:

! ,
nl{m — n)!

Cy =

whence, by substituting m — » instead of n, the useful formula
: Cr = O

" ean be derived.
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7. After thesc preliminary remarks, we can turn to the problems in
which the foregoing formulas will often be used.

\/Problem 8. An urn contains @ white balls and b black balls. If
o -+ 8 balls are drawn from this urn, find the probability that among
them there will be exactly & white and 8 black balls.

Solution. If we do not distinguish the order in which the balls come.
out of the urn, the total number of ways to get « -+ 8 balls out of the
total number & + b balls is obvicusly expressed by Czf and this is
the number of all possible and equally likely eases in this problem \*The
number of ways to draw « white balls out of the total numbera.df white
balls in the urn is €2; and similarly C¢ represents the nuniber of ways
of drawing 8 black balls out of the total number b of bIgwk balls, Now
every group of a white balls combines with every phssible group of §
black balls to form the total of & white balls and pdblack balls, so that
the number of ways to form all the groups contdinifig « white balls and
£ black balls is C*- C8. 'This is also the qlxt)qbcr of favorable cases;
hence, the required probability is "N

_Ce- gy

= e My
P
or, in a more explieit ﬁ@ﬁ:mr,dbrau!i'bréi'y_org_in

_ 1'2"‘(‘*“‘['."5}“ )
(1) p_12a12’\,8
'a(a—la)\'\"" (e —a+1)-bB-1) - - (b—ﬂ—f—l)‘
(g,ﬁ—\b}(a—f-b—l) et b—a—-8+1)

Problem 9, AxGirn contains n tickets bearing numbers from 1 to n,
and m tickets gpé-drawn at s time. What is the probability that ¢ of
the tickets an‘o’ved have numbers previously specified ?

Solutiofi\" This problem does not essentially differ from the preceding
one. Inifact,  tickets with preassigned numbers can be likened to 2
W]_:lirtefb\alls, while the remaining tickets correspond to the black balls.
Theyequired probability, therefore, can he obtained from the expression

~{1) by takinge =i{,b =n —d,a = 4,8 =m — 1 and, all simplifications
performed, will be given by

omim—1) - (m— 44+ 1)
@ p"nn—-l)---(n-e'—kl)'

The eonditions of this problem were realized in the French lottery,
which was operated by the French royal government for a long time but
discontinued soon after the Revolution of 1789. Similar lotteries
continued to exist in other European countries throughout the nineteenth
century. In the French lottery, tickets bearing numbers from 1 to 90
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were sold to the people, and at regular intervals drawings for winning
numbers were held in different French cities. At each drawing, 5
numbers were drawn. If a holder of tickets won on a single number,
he received 15 times its cost to him. If he won on two, three, four, or
five tickoets, he could claim respectively 270, 5,500, 75,000, and, finally,
1,000,000 times their cost to him.

The numerical values of the probabilities corresponding to these
different cases are worked out as follows: we must take n = 90, m = 5,
and ¢z = §, 2, §, 4, or 51in the expression (2). The results are '

Single ticket 9% = Ilg ;'< v

Two tickets n ig gg = —(2)1’\ N

Three tickets 3089 -?;58 = 1}_%48

Four ticket!s 905, 83 gg ?§7§%§\3111038
5-4-3-2-\Y - 1

Five tickets

90 -89 - 88 »87 86 43049268
8. Problem 10. From WWW&%OQ white balls and b black

ones, & certain number of bells, #348 drawn, and they are laid aside, their
color unneted. Then one m{re ball is drawn and it is required to find
the probability that it i3 g @hite or a black ball

Solution. Suppose the & balls removed at* first and the last ball
drawn are laid on k,7|~“1 different places, so that the last ball occupies
the position at thedextreme right. The number of ways to form groups
of 2+ 1 balls ou‘t "of the total number of ‘@ + b balls, attention being
paid to the oKéler 18

.}:\ (e +M@+bdb—-1) - (a+b—Ek).

Buch-dg the total number of cases in this problem, and they may all be
considered as equally likely. To find the number of eases favorable to
2 white ball, we observe that the last place should be occupied by one of
the o white balls. Whatever this white ball is, the preceding % balls
form onc of the possible arrangements out of @ -+ b — 1 remaining balls
taken kat a time. Henee, it is obvious that the number of cases favorable
to a white ball is '

aa+b—1)-- (a+b—F),
and therefore the required probability is given by

13

a+b
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for a white ball. In a similar way we find the probability 5/(a 4 b) of
- drawing a black ball. These results show that the probability of getting
white or black balls in this problem is the same as if no balls at all were
removed at first. Here we have proof that the peculiar circumstances
ohserved in Proh. 6 are general. _
9. Problem 11. Two dice are thrown # times in suceession. What is
the probability of obtaining double six at least once? <
~Solution,  As there are 36 cases in every throw and each case of the
- first throw can combine with each case of the second throw, and so'on,
the total number of cases in » throws will be 36~ Instead of tzying to
find the number of favorable cases directly, it is easier to find th@‘nuinber
of unfavorable cuses; that is, the number of cases in whiclydguble sixes
would be excluded. In one throw there are 35 such cases, #nd in n throws
there will be 35. Now, excluding these cases, We.«a}sﬁain 36" — 357
favorable cases; hence, the required probability is T e

. )
p=1—@H" \\

S

If one die were thrown n times in successiqﬁ,’ the probability to obtain
" 6 pdints at least onee would be A\
_ p=1=v)"
www . dbraulibrary.org.in .
Now, suppose we want to findSthe number of throws sufficient to
assure a probability > 14 of obfaining double six at least once. To this
end we must solve the ineq{ahty

3 <3

for n; whenee we ﬁqd’} 4

\’;“> log 2
A\ log 36 — log 35

It mea\aig‘that in 25 throws there is more likelihood to obtain double
six af-léast once than not to obtain it at all. On the other hand, in
24 ti’h\n{fs, we have less chance to succeed than to fail.

Now, if we dealt with a single die, we should find that in 4 throws
there are more chances to obtain 6 points at least once than there are
chances to fail, -

This problem is interesting in a historical respect, for it was the first
problem on probability solved by Paseal, who, together with his great
contemporary Fermat, had laid the first foundations of the theory of
" probability. This problem was suggested to Pascal by a certain French
nobleman, Chevalier de Méré, a man of great experience in gambling.
He had observed the advantage of betting for double six in 25 throws
and for one six (with a single die) in 4 throws., He found it difficult to

=246 .. ..



22 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cuar. I

understand beeause, he said, there were 36 cases for two dice and 6 cases:
for one die in each throw, and yet it is not true that 25:4 = 36:6, Of
course, there is no reason for such an arbitrary eonclusion, and the cor-
rect solulion as given by Pascal not only removed any apparent paradoxes
in this case, but it led to the same number, 25, observed by gamblers in
their daily expericnce.

10. Problem 12. A cerfain number # of identical balls is distributed
among N compartments. What is the probability that a certain speci-
fied compartment will contain i balls? A~

Solution. To find the number of all possible cases in this“problem,
suppose that we distinguish the balls by numbering them £eom 1 to n.
The ball with the number 1 may fall into any of the N Corhpartments, -
which gives & cases. The hall with the number 2 may- also fall into any
one of the N compartments; so that the number of Gases for 2 halls will
be N -N = N2% Likewise, for 3 ballg the numberbf eases will be

NN = N5\

and for any number n of balls the numberof cases will be N=, To find.
the number of favorable cases, first ’sifpﬁose that a group of A specified
balls falls into a designated compartifienis. The remaining n — k ballsmay
he distributed in anyweay. éhr@nghﬂmy dgémaining compartments. But
the number of ways to distribute n — & balls among N — 1 compart-
ments is (N — 1)** and thils becomes the number of all favorable cases
in which a specified g]‘O].Iﬂ]bf k balls occupies the designated compartment.
Now, it is possible toferm C% such groups; therefore, the total number of
favorable cases is giyen by
'\::\ - (N — 1), _

and the Nﬂ\qﬁlred probability will be TR
..\: N = (AN“ .

) 3

In case n, N and % are large numbers, the direct application of this
formula becomes difficult, and if is advisable to scek an approximate
expression for ps. To this end we write the preceding expression thus:

O ES T el A\

(-0 (-4

B ooy

where
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Now, supposing 1 £ k& < h — 1, we have
_k _h=ky_ h  kh— k) h
(@) (1 a)(l T)-l.—;+T> 1=
On the other hand,
B — k)< 2 ;
( - )= Z" .
and so
® (-00-59=0-2) o

The inequalities (a) and (b) give simple lower and upper I’«nﬁlts for P.
For we can write P? thus:

4

R—1 ¢ O
k h — kA~
g _ 5 N
P = H(I n)(l n ) i

k=1 \

“'

and then apply (&) or (b), which leads to thggé&i\nequaﬁties

- N het
P<(1—2i) , P'}-’(l—é)?-
i) n

Correspondingly, we have WWW. dbraudlbl ary.org.in
) *

S

RN .

Gy
2!"{\’3’1-2-3- h(1 N) (1 n)
e

" Problem’ \13 What is the prﬂbabﬂlty of obtaining & given sum s of
points wrth n dice?

Soluﬁon The number of all cases for n dice is evidently 67. The

nber of favorable cases is the same as the total number of solutions of

the equation :
<¥ Catat o tan=s
where a1, ag, - - - @, are integers from 1 to 6. This number can be
determined by means of the following device: Multiplying the polynomial
(2) z + 2 _!_ 2 + 2t + b ,_l_ ¢ ‘_\'} ¢ Ii%‘j/\h,l. _..-_u.;- - ,\! {'-'::;""".‘"

by itseli, the product will consist of terms

Pt
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where o and s 1ndependently assume all integral values from 1 to 6.
Colleeting terms with the same exponent s, the goeﬁi(‘:ent oﬁ{&* will give
the number of solutions of the equation g

“‘&x R s TR

ay +ay = 8,

@i, az being subject to the above mentioned limitations.

Similarly, multiplying the same polynomial (2) three times in itself
and collecting terms with the same exponent s, the coefficient of z* will
give the number of solutions of equation (1) for n = 3. In general, the
number of solutions of equation (1} for any = is the coefficient of x* in
the expanded polynomial )

£\

(@ + & + o8 + xt + 28 | of)n,

Now we have identically v
x(l ; xﬁ) .
x 4 ;-32. + 2 4zt + 2f :cﬁo z—\\ﬁl—__x—,‘.
. . - N
and by the hinomial theorem DAY,
. R

z7(1 — xﬁ)n x::. (—1)iCLpr+s
WWW. clbra ary.org.in

a -—‘x)% = 2 k.

k=0

Multiplying theqe §enes we find the following cxpression as the
coeﬂiuent of x*:

e S
"\\ﬁ 2 1)20?’ 'y

N,

whqézkﬁmmation extends over int-egers not execeding § E 2. The same
suni represents the number of favorable cases. Dividing it by 67, we
get the following expression for the probability of s points o » dlce

5
. },( DICLC e

The preceding problems suffice to illustrate how probability can be
determined by direct enumeration of cases. For the benefit of students,
a few simple problems without elaborate solutions are added here.
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Problems for Solution

1. What is the probability of cbtaining 9, 10, 11 points with 3 dice?
Ans. 23216, 2W316, *M1s-
’ J 2. What is the probability of obtammg 2 heads and 2 tails when 4 coins are

thrown? Ans. 3¢,
3. Two urns contain respectively 3 white, 7 red, 15 black balls, and 10 whlt.e

6 red, 9 black balls.  One ball is taken from each urn.  What iz the probability-that
they both will be of the same eolor? Ans. 2004, 5

4, What is the probability that of 6 cards ta.ken from & full pack, 3 will be
and 3 red. Ang 130004, -, = 0.332 apprommateb
7 B. Ten cards mre taken from s full pack. What iz the probability of finding \f
among them (&) at least one ace; (d) at least two aces? Ans. 549%05; ‘135%”5

6. The face cards are removed from a full pack. Out of the 40 remémmg cards,
4 are drawn. What is the probability that they belong to different;, smts'?

S dns. 10006, .0
7. Under the same conditions, what is the probability tha.t'\the 4 cards belong to

W,

different guits and different denominations? "y Ang, 5944120, -
- B. Five cards are taken from a full pack. Find the probablhtles {a) that they are
Y of different denominations; (b} that 2 are of the same, fmination and 3 scattered;

(¢} that one pair is of one denormnatlon and anothergidi¥ of a different denomination,
and one odd {d} that 3 are of the same denommaﬁmn and 2 seattered; (¢) that 2 arc
of one denomination and 3 of another; (f) that 4- are of one denommatmn and 1 of
another. \

Ans. {a) 21124,45; {B) 17604160: {e) 19§4165, (d) 8%1&5: OB AT B ATTR

9. What is the probabilityvEhnt briastlébd sk¥eati§i Baccession in the French lottery

will present an increasing or decreasmg sequence of numbers? Ans. Yo,
10, What is the probability thébamong 5 tickets drawn in the French lottery there
is at least one with & onc-digit agmber? Ans. 46283{, 4555 = 0.417.
2 11, Twelve balls are st’{lbuted af random among three boxes. What is the
55.21
probability that the ﬁrst box will contain 3 balls? Ans. s = (.2120.
12. In Prob. 12 (page 22) what ig the most probahle number of balls in a spemﬁed
box? dns. The pmbablhtv A
\}’ _CHN — 1
& = Ns
is the gréaiést if the integer k is determined by the conditions .
i \ . i
\¥ . s
\. ﬂ+1_1£h£n+1_ -
N - - N

13. Apply these considerations to the case of n = 200, N = 20. Ans. Since
= 10 the inequalities on page 23 give

1010 1
o < 10‘(1 —‘—) (l ———)
100 1}
LT 20 ~ a0
To find an approzimate value of

(1 — zlﬂ)'lso

=
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note that

1 1 1
e—lmfaﬁmﬂLm* T ]

A — e =
To 3 decimals .
P = 0.128.

14, Four different objeccts, 1, 2, 3, 4, are distributed at random on four places
marked 1,2, 3, 4. What is the probability that none of the objects oecupies the place
corresponding to its number? - Ans. 34.

16. Two urns contain, respectively, 1 black and 2 white balls, and 2 black and
1 white ball. One ball is transferred from the fivst urn into the second, after which a
ball is drawn from the seecond urn.  'What is the probability that it is white?

. 4’&3\%2'

16. What is the probahility of getting 20 points with 6 dice? N\ M

: Ans. 4884, 5, =/0.09047.

17. An urn contains & white and b black balls. Balls are drawnzone by one until
only those of the same color are left. Whai is the probability thihthey are white?
| S

> ne. 3

18. In an urn there ave » groups of p objects each. Ohjéets in different groups sre

distinguished by some characteristic property. What‘ig\tho probability that among

oy +eaxt -+ ;@ 0bjects (0 S s Zpyi = I,,2,> . . n) taken, there are e of
onc group, e of another, ete.? Ans, Let h amgng“the numbers ar, o3, . . . @, be
equal to a, x be equal to B, . . . o be equal to¥. . The required probability is

%

nl
Al v R O

FProblem 8 is a particular case of tiis,

19, There are N tickets num,b(;i‘ 1,2, . . . N of which n are taken at random and

arranged in increasing arder\sbtheir numbers: o < Ty < v v+ < Zao  What ig the
N e —TH
probability that #. = M2\ Ans. M’ :
' & G
x'\ w4
:”\\~
.'\

4 ..\’: 3

<




CHAPTER I1
THEOREMS OF TOTAL AND COMPOUND PROBABILITY

1. As the problems become more complex the difficulties in enumerat-
ing cases grow and often the computation of probabilities by dn-ect
application of definition becomes very invelved. In many caked the
complications can be avoided by use of two theorcms W]llch are funda-
mental in the theory of probability.

Before we can give a clear and exact statement of the ﬁrat fundamental
theorem, w¢ must define what is meant by “mutual}y exclusive” or
“incompatible” -events. Events are called mbfulilly exclusive or
incompatible if the occurrence of one of them p(eciudes the oceurrence
of all the others. For instance, the four even{snoncermng the number
of points on two dice

First Die R\ éecond Die

;www_d brauli, bj'aa'.r‘{;.org.ing
- 3 \\ 2
4 4 1

are mutually exclusive becalfse\it is evident that as soon as one of them
oceurs, none of the otherd'ean materialize.

On the contrary, .evénts are compatible if it is possible for them to
materialize simultanebtsly. For instance, the events of 5 points on one
die and 5 pomts on-the other, are compatible, sinee in tossing two dice
it is possible to \geﬁ 5 points on each.

To denofe'the probability of an event A, we shall use the symbal (A).
To dencﬂ@ the probability of 4 or B (or both) we shall use the symbol
(A —{ ‘B)/ Dealing with several events 4, B, . L, the symbol .

A+B+ - 4D

will denote the probability of the occurrence of at least one of them.
If A, B, . .. L are mutually exclusive events, this symbol represents
the probability of the occyrrence ﬂ one of them without specification as
to which one. ' '

2. Now we shall state the first fundamental theorem, called the
“theorem of total probability” or *‘theorem of addition of probabilities,”
in the following way: .

Theorem of Total Probability. The probability for one of the mutually

exclusive events A, Ay, . . . Auto materialize, is the sum of the probabilities . -

27

k]
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of these events. In symbolical notations, it is expressed thus:
(At de+ -+ A) = Ay + A + - - - + (4.

Proof. Let N be the number of all possible and equally likely cases
out of which m, cases are favorable to the event Ay, m; cases arcfavorable

jotheevent Az, . . . , and finally, m, cases are favorable to the event 4,.
These cases are all different, since cvents 4, As, . . . 4. are incompati-
ble. The number of cascs favorable to ecither 4, or 44, . . . or 4, is
therefore ~
my+me+ A O\
Hence, by definition N\
- M
Again, by definition of probability, 7 \d
Ty X x\ i
N = (A); (‘12), D w (4.),

www.dbt‘aull!)ral'y,org.ln

(/11 -+ A.z “l" R Aﬂ}~=, (Al) + (A'Z) + - 4 (Aﬂ)a

P4\

as stated. AN

3. It is important t kgow that the same theorem, stated in a slightly
different form, is eespe(‘(\ihlly ugeful in applications. An event A can
oceur in several mutually exclusive forms, Ay, A, . . . 4, which may
be considered a ’Eha,t many mutually exclusive events Whenever 4
oCCurs, one of&hese events must oceur, and conversely. Consequently,
the pmbabl.Qty of 4 is the same as the probability of one (unspecified)
of its mutually exclusive forms. If, for instance, occurrence of 5 points
on twe" dieo is A, then this event occurs in 4 mutually exclusive forms, as
taBulated abovc

om the new point of view, thp theorem of total probability can be

stated thus:

Second Form of Theorem of Total Probability,. The probability of
‘an event A is the sum of the probabilities of its mutually exclusive forms
Ay, Az, ... Anyor, using symbols, 7"

(A) = (A1) + (42} + - - - + (4w,

Probabilities (A1), (44), . . . (A.) are partial probabilities of incom-
patible forms of A. Bince the probability 4 is their sum, it may be called
s total probability of A. Hence the name of the theorem.

and so finally
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In the preeeding example we saw that 5 points on two dice could be
obtained in 4 mutually exelusive ways. Now the probability of any one
of these ways is 14g; hence, by the preceding theorem, the probability
of obtaining 5 pointg with two dice.is

Wt tdh T =%
as it should be. -

If events A, Aq ... A, are not only mutually exclusive, but
“ exhaustive,” which means that one of them must necessarily take place,
the probability that one of them will happen is a certainty = 1,sovthat
we must have : K\ A

A) + W)+ -+ ) =1 7
An event which is not certain, may or may not happen;,' yhis constitutes
two mutually cxclusive cases. It is customary to.calhhonoccurrence of 2
certain event 4 as the “event opposite” to A,<aud we shall denote it
by the symbol A. Now 4 and A constitute WO <haustive and mutually
exclusive cases. Hence, by the preceding }'e‘{nark

() + (4) A
That is, if p is the pmb@*@m?;é’bgglfﬂip}%{-y_ org.in
¢ 1-p
represents the probablllty t.ha,t 4 will not cecur.

4. Tf an event A iscebhsidered in connection with another event B,
the compound event AB ‘eonsists in simultaneous occurrence of A and B.
For three cvents A B, C, the compound event ABC consists in siroul-
taneous occurrencs v'of A and B and C, and so on for any number of
component e}rgn’\ﬁs. We shall denote the probability of a eompound
event A B ,\\ L by the symbol

N (AB ... L)
A ”e.ére\flt A ean materialize in two mutually exclusive forms, namely,
and B or A and B. Henee, by the theorem of total probability

(%) = (4B) + (4B).

(B) = (B4) + (B4),
or, since the symbol (BA) does ﬁot depend upon the order of letters,
(B) = (4B) + (4B).
The sum (A) + (B) ean be expressed as
(A) + (B) = (AB) + [(4B) + (4B} + (4B)}.

Bimilarly
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Again, by the theorem of total probabilities, the sum
(AB) + (AB) + (4AB)

represents the probability (A + B) of the oceurrence of af least one of
the events 4 or B. The preceding equation leads 1o the useful formula

ey _ (A+B) =(4) +(B) — 4B

which obvmusly is a generalization of the theorem of total probability;
for (AB) = 0if A and B aré incompatible. Equation (1) ean be used to
derive an important inequality. Since (4 4+ B) = 1, it follows frofan(1)
that N

¢\

4Bz @A)+ (B -1 2N\
Ii B iisgelf iz a compound event A4, this inequalityﬂeﬁdé to

(A4:4:) 2 (A) + (dudy) — 1 w'\"’
Bat \d
(4:142) 2 (Al) + (4 — 1\\

and so
(AAlﬁa) = (A) + (A1)~7!—’(As) -2

for three component events. Proceeding in the same manner, we can

establish the following g@n&pﬂdhmd;j&hty org.in

(AAu‘la Lt n—-—l) (A) + «(Al) ‘I— (Az) + -+ (An-—l) - {ﬂ. - 1)-
Applying this inequall,;ty,\to events A, Ai, ... A,.1 respectively
opposite to 4, A4y, . . %y, we get

or, sinct_}#_(ﬁ.-) =,j{~; (4, '
¥ + -+ U 21— @ A,

Now the éompound event A4, . .. A,._; means that neither A nor
Ay oL nor A, oceur he event opposite to thig is that at least
one'ef the events A, Ay, A, 1oceurs. Hence,

1~ (A4 - ) = (A + AR - 4,
and we reach the following important inequality:

A At A S A A (A) T  d (Ae).

b. Ilquation (1) can be extended to the ease of more than two events.
Let B mean the occurrence of at least one of the events 4, or 4s. Then

_by (1

(A4 A+ Ay = (4) 4 (A1 + 42) — (4B).
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As to (4, + 4,), its expression is given by (1). The compound event
AB means the occurrence of one at least of the svents AA, or AA,.
Hence, applying equation (1) once more, we find

(AB) = (A4 4 AA;) = (AA) + (AAy) — (A4 4y)
and after due substitutions

(A + 4 + A2) = (A) + (AI) + (-“12) - (AAl) - (AA2) - (1‘111‘12) +

+ (44 14{).
Proceeding in the same way and using mathematical inductign,\he
following general formula can be established: )

A+ Ait - 4 Aas) = 240 — (A + T (AAMS — - - -
. i ihk

where summations refer to all combinations of subsc}i})ts taken from
numbers 0, 1, 2, . . . » — 1, one, two, three, . . \\\and » at a time.

6. Let A and B be two events whose proba{hﬁﬁies are (4) and (B).
It is understood that the probability (4) if\determined without any
regard to B when nothing is known about\the oceurrence or nonoceur-
rence of B. When it /s known that B geciirred, A may have a different
probability, which we shall denote hytthe symbol (4, B) and call “cone
ditional probability of A, given tlaxa;ii‘B has actually happened.”

Now we can state the sgconid fundamental theorem, called the
“theorem of compound probability” or “theorem of multiplication of
probabilities,” as follows: ¢\

Theorem of Compom}l\Probability. The probabelity of simultaneous
oceurrence of A and B.isgiven by the product of the unconditional probability
of the event A by the\conditional probability of B, supposing that A actuelly
occurred. In Qj:\l‘f@r“words,

& (AB) = (4) - (B, 4).

Proof.3¥Let N denote the total number of equally likely cases among
whichjm(\'cases are favorable to the event A. The cases favorable to 4
and B are to he found among the m cases favorable to A. TLet their
number be 7. Then, by the definition of probability,

L3

= B,
which also can be written thus:
—m m
(4B) = N m

Now the ratio m/N represents the probability of A. To find the meaning

of the second factor, we observe that, assuming the occurrence of A, -




32 INTRODUCTION TO MATHEMATICAL PROBABILITY [Crmar. IT

there are cnly m equally likely cases left {the remaining N — m cases -

becoming impossible) cuf of which m, are favorable to B. Hence the

ratio m,/m represents the conditional probability (B, 4) of B supposing

that A has aetually happened. .
Now since

ma

nm
T=@, =4,

the probability of the compound event AB is expressed by the product
(4B) = (4) - (B, 4). W

Since the eompound event AB involves 4 and B symuethically,
we shall have also O

(4B) = (B) - (4, B).

¢4
The theorem of compound probability can easily be"‘&tended to several
events. For example, let us consider three events,\4, B, C. The occur-
rence of A and B and C is evidently equivale,nt%o the occurrence of the
compound event 4B and . We have, therefore,

(4BC) = (4B) €, AB)
- by the theorem of compound é}};g‘aﬁ’%ﬂjﬁ.‘;}:or@m the same theorem

(AB) =\¥) - (B, 4),
g0 that \
(AB(Q‘.;’ (AY- (B, A)Y- (C, AB).

Obviously this forjmha ganr be extended to compound events con-
sjéting of more than{thitee components.

In one partiguldy but very imporiant ease, the expression for the
compound probability can be simplified ; namely, in the ease of so-called
“independeng\évents.”  Beveral events are “independent” by definition
if the probgbility of any one of them is not affected by supplementary
kuom&l@@‘gé concerning the materialization of any number of the remaining
eveﬁ%l;s? For instance, if A and B represent white balls drawn from
two different urns, the probability of 4 is the same whether the eolor
of the ball drawn from the other urn is known or not. Similarly, granted
that a coin is unbiased, heads at the first throw and heads at the gecond
throw arc independent events. In such theoretical cases the inde-
pendence of events can be reasonably assumed or agreed upon. In other
cases, and especially in practical applications, it is not easy to decide
whether events should be considered as independent or not.

If A and B are independent, the conditional probability (B, 4) is
the same as the probability (B) found without any reference to 4; this
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follows from the definition of independence. Hemee, the expression of
compound probability (4 B) for two independent events becomes

(AB) = (4) - (B)

so that the probability of a compound event with independent com-
ponents is simply equal to the product of the probabilitics of component,
events. This rule extends to any number of component events if they
are independent. Let us consider three independent events, 4, B, and €.

The independence of these events implies ~\
(B,4) = (B); (C, AB) = () O\
and hence O :
(ABC) = (4) - (B) - (C} N\
in accordance with the rule. ¢ {’

To Mlustrate the theorem of compound probablhty, let us consider
two gimple cxamples. An urn gontains 2 white Bglls and 3 black ones,
Two balls are drawn, and it is required to find €he probability that they
are both white. ILet A be the event consisting in the white color of the
first ball, and B the event consisting in th€white eolor of the second ball.
The probability (A) of cxtracting a white ball in the first place is

www.dbtﬁﬂ_{igﬁ%lfy,org,jn

To find the conditional probabﬂitjr'(B A) we observe, after drawing one
white ball, that 1 white aﬂi@ 3 black balls remain in the urn. The
probablhty of drawing a{e&lﬁte ball under such eircumstances is

(Br A) = I<
Now, hy the theq{én\l of compound probability, we shall have
O um-ii-a

Evidentlyin u'this example we dealt with dependent events.

As ag® example of independent events, let a coin be tossed any given
nundbar-of times; say, n times. What is the probability of having only
hea%? The compound event in this example consists of n independent
components; namely, heads at every trial. Now the probability of
heads in any trial is 14, and so the required probability will be 1/2*

Note: Two events 4 and B are independent by definition, if

(A, B) = {4) and (B, A) = (B).
However, one of these conditions follows from the other.  Suppose the condition
(4, B} = (4)
is fulfilled, so that A is independent of B. We have then
(AB) = (B) - (4).



34 INTRODUCTION TO MATHEMATICAL PROBABILITY ([Crap. 11

On the other hand,
{(AB) = (4} - (B, 4},
whenee
(B, A} = (B),

go that B is independent of 4.
Three events A, B, ¢ are independent if the following four eonditions are fulfilled:

(4, B) = (4d}); {4, Cy = {4d}); (B, C)y = (B); (C, AB) = (),
From the first three conditions it follows that

(B, 4) = By (0, 4) ={C)y (C,B) =(C) ~
To show that the other requirements \
(B, AC) = (B)Y; {4, BC) = (4) AN
are also fulfilled, we notice that (n’}"\

(ABC) = (4) (B, 4) - (C, 4B) = (4) - (B) (O
because (C, AB) = () by hypothesis and (B, A) = (B} a.s'péoved. On the other
hand,
(4BC) = (4) - (€, 4) - (By Azb‘)

and (', A) = {C). Hence, comparing with the prccédlng cxpression,
(B, ACY ﬁ’(b’)-
Similarly, it car be shown thsw w.dbra’ux!-ib}"m.‘y .org.in
(4, B6) = (4).
The independence of four events {h B, €, D) in sssured if the following 11 conditions
are fulfilied: ¢ \..

(4, B) = (4, C) = (4, Dh=1(4); (B, €) = (B, D} =(B); (C, D) = (C};
(C, 4B) = (0);  (UZAB) = (D, AC) = (D, BC) = (D); (D, ABC) = (D).

And in general, md‘ependencc of n eventa is assurcd if 2% — u — 1 condifions of
similer type are filfifled.

If several c;%ents are independent, every two of them are indepcndent; but this
does not sutﬁt..e for the independence of all events, as can he shown by a simpie exara-
ple. Apuin contains four tickets with numbers 112, 121, 211, 222, and one ticket is
. drawfi,\"What are the probabilities that the first, second, or third digits in its numhber

Kf\ et a unit such as the first, second, or third diglt, be represented, respectively
by A, B,or !, ' Then

(A} = (B) = (C) = § =

i
el

Compound probabilities {4 B), (AC), (BC) are

(4B) = (AC) = (BC) =

)

I

since among four tickets thers ig only one whose number has first and second, or -

first and third, or second and third digits of 1. Now, for instance,

“ (4B} =% =3 §=(4)-(B)
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whenece A and B arc independent. Similarly, 4 and €; ¢ and B are independent.
Thus, any two of the events 4, B, € are independent, bul not el three events are.
For, if they were, we should have

{ABC) =
But (A4B(C) = 0 since in no ticket are all three digits equal to 1.

7. The theorems of total and compound probability form the founda~-
tion of the theory of probability as it represents a separate branch of
mathematical science. They serve the purpose of finding probabilities

“in more complicated cases, either by being directly applied or by enabling
us to form equations from which the required probabilities can be feund.
A few selected problems will illustrate the various ways of us‘mg these
theorems.

v Problem 14. An urn contains ¢ white balls and b bl,ack balls, another
contains ¢ white and d black balls. One ball i trangferred from the first
urn into the second, and then g ball is drawn from te latter. What is
the probability that it will be a white ball? N/

Solution. The event consisting in the wlm;e color of the ball drawn
from the second urn, can materialize undeptwo mutually exclusive forms:

when the transferred ball is a white ons, and when it is black. By th?\

theorem of total probability, g must & find the robablhues corresponding
to these two forms. To"ﬁnH éhg 'Cﬁ]ro %I[lgy% the first form, we observe
that it represents & compound event consisting in the white color of the
transferred ball, combined with' the white color of the extracted. ball.
The probability that the {{a;&en‘ed ball is white is given by the fraction

N _e
Q) a+b
and the probability-that the ball removed from the second urn is white, is
& :
& c+1
s\ & + d "l— 1

becauae\before the drawing there were ¢ + 1 white balls and 4 black
bal ib'the second urn.  Hence, by the theorem of compound probability,
the probability of the first form is
e+l
e+b)c+d+ 1)
In the same way, we find that the probability of the second form is
be ,
@+ bd)c+d+1)
and the sum of these two numbers

ac -+ be + a . :
{a+blc+d+ 1) &




36 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cuap. 1Y

gives the probability of extracting a white ball from the second urn, after
one ball of unknown color has been transferred from the first urn.’

‘. Problem 15. Two playcrs agree to play under the folﬁ)wing
conditions: Taking turns, they draw the balls out of an urn containing
@ white balls and b black balls, one ball at a time. He who extracts the
first white one wins the game, What is the probability that the player
who starts will win the game?

Solution. TLet A be the player who draws the first ball, and let B
be the other player. The game can be won by A, first, if he extraets a
white ball at the start; second, if A and B alternately extract, 2\black
balls and then A draws a white one; third, if A and B a,ltemater extract
4 black balls and the fifth ball dla“n by A is white; and so on. By the
thearem of total probability, the probability for A toywinl the game,
is the sum of the probabilities of the mutually exclusiy@’ways (described
above) in which be can win the game. The probalnhty of extracting a
white ball at first is \ '

a \\
T SO

The probability of extracting 2 black b,a.ll’s and then 1 white ball is found
by c]irP:ct- z.a.pplicat.ion of t l’gpgg {r‘%rgfmcgompound probabilities. Its ,
expression ig

i

!
¥
i
g
N

bib.‘— 1a
(@ + b){d\-l- b—1)e +5—2)
The prObabﬂlty of extra@ﬁng 4 black balls and then 1 white ball is given
by

\<

b@—n@—m@—ma
@r T - Dat+b—2@rb—Dats -4y

using the S.,aiﬁe theorem of compound probability.
In th\o same way we deal with all the possible and mutually exclusive
gwhich would allow A to win the game. Then, by adding the above
givehvexpressions of partial probabilities, we obtain the expression for the -
required probability in the form of the sum

b(b — 1)
P= a+b[]+(a+b—1)(a+b-2)+
b — 1) — 2 — 3) . ]
w+banm+b—mm+b~mm+b—@ '

The law of formation of different terms in this sum is obvious; and_i
the sum automatically ends as soon as we arrive at a term whlch is equal ;
{0 zero. S
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In the same way, we can find that the probability for the player B
to wi___n is expressed by an analogous sum:

o b bb — 1)(b — 2)
Q—a+b[a+b—~1+(a+b—1)(a+b-—2)(a—|—b—3) J

But one of the players, 4 or B, mus{ win the game, and the winning of
the game by 4 and B are opposite events. Hence,

P+Q=1 O
or, after substituting the above expressions for P and @ and af ter@bvmous
simplifications, .\

b b(b — ) i:"a +b
1+a+b—1+(a—|—'b~—1)(a+b—__2) =TT

This is a noteworthy identity, chtained, ag “c‘ see, by the prineciples
of the theory of probability. Of course, it e¢8u“be proved in a direct
way, and if would be a good problem for st‘udents to attempt a direct
proof. There are many cases in which hy means of considerations
belonging to the theory of probability, ‘geveral identities or inequalities

" ean be established wh%glmﬁggggpgﬁgpgmlcs involves considerable

difficulty. ¢
9. Problem 16. FEach of & urns contains n identical balls numbered

from 3 ton. One ball is dra.v\n from every urn. What is the probability
that m iz the greatest n ‘ber drawn?

Solution. Let us de‘&ote by P, the required probability. It is not
apparent how we cam find the explicit expression for thig probability, but
using the theores of total and compound probability, we can form
equations whiek &ield the desired expression for P, without any difficulty.
To this end\[et us first find the probablhty P that the greatest number
drawn does not exceed m. It is obvious that this may happen in m
mutualiy ‘exclusive ways; namely, when the greatest number drawn is
1, 2 3 and soonuptom. The probablhtles of these different hypotheses
bemg P, P, ... P,, their sum gives the following first expression for
P:

(1) P=P +Py+ - +Pn

We can find the second expression for P using the theorem of com-
pound probability; namely, the greatest number drawn does not exceed
m if balls drawn from all irns have numbers from 1 to m. The proba-
ility of drawing a ball with the number 1, 2, 3, . . . m from any urn is
.m/n. ‘And the probability that this will happen for every urn is a
mpound event consisting of & indeperdent events with the same
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probability m/n. Therefore, by the theorem of compound probability
: /

And this compared with (1) gives the equation

. mﬁ:
_(2) Pr+Py4 - + Py =
Substituting m — 1 for m in this equation, we get Q)
m — 1)* 23 \\
Pot Pt o Py = DL (S
and it suffices to subtract this from (2) to have the requn’ed expression for
P T RY
mF— (m — 1)* N
P, = =)
i3 (N

JO. Problem 17. Two persons, 4 anﬂ}? have respectively = + 1
and % coins, which they toss sunultancouq]y What is the probability
that A will have more heads than BZL _

Solution. Let g, u’ 4hd- Slbﬁa%g’ﬁﬁiﬁé%rbf heads and tails thrown
by A and B, respectively, so that p+» = n + 1, ¥+ =n The
required probab1hty Pis the‘probablht) of the mequahty p > u'. The
probability 1 — P of $hd ppposife event p = 4’ is at the same time
the probability of the 1ﬁeﬁuahfy v > v'; thatig, I — P i3 the probability
that 4 will throw mgtotails than B. By reason of symmetry 1 — P P,
P =1 NO
. 11. Problem\18 Three players 4, B, and € agree to play a series of
garhes obse mg ‘the following rules: two players participate in each game,
while thefhird is idle, and the game is to be won by one of them. The
loger in\éé}ch game quits, and his place in the next game is taken by the

?Br avho was idle. The player who suceeeds in winning over both

%1‘3 opponents without interruption, wins the whole series of games.
Supposing that the probability for cach player to win & single game is
1¢ and that the first game is played by A and A, find the probability for-
A, B, and C, respectively, to win the whole series, if (¢) the number of
games to be played is limited and may not exeeed a given number n;
if (&) the number of games iz unlimited.

Solution. Let P,, @., Rx be the probabilities for A, B, and €, respec-
tively, to win a series of games when their number cannot exceed . By |
Teason of symmetry, P. = @, so that it remaing to find P, and R,.
The player 4 can win the whole scries of games in two mutually exclusivg.
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ways: if he wins the first game, or if he loses the first game. Let the
probability of the first case be p, and that of the second r,. Then

P,=p.+ 1.

A can win the whole series after winning the first game, in two mutually
exelusive ways: {a) if he wins over B and C in successior; (b) if he wins
the first game from B and loses the second game to C; then, if in the third
game ( loses to B, and in the fourth game A wins over B and later wins
the whole series of not more than » — 3 games, Now, the probapbility
of case (u) is 14 -14 = 14 by the theorem of compound probahility;
that of case (b) by the same theorem is 1¢p,.3; and the total prgbability is

O pa=141p.

If A loges the first game to B, but wins the whole ééries, then in the
gecond game € wins over B while the third gameg .i"s’;}ron by A, and not
more than n — 2 games are left to play. Hence

L &

o
a
<

\

= A
(2) Fa = }pn—%’“‘\n
Since evidently p: = ps = p. = %; Jequation (1) by successive
substitutions yields R\
' g dbrayhb& 4ry.or s in 1
Pk = 1 8 + 82 QT—“I

Pari1 _, *(\1 435+ 82 + - s 8"—
1
Psk+2 ( + + 5 82 + - S §)

or, in condenqet;l form for an arb1trary n
N\

& s,

deno‘mng by [z] the grea.test integer contained in x. Hence, by virtue of
622 the general expression of r, will be

n—~1
=it - 8" U]
and that Of Pﬂ, Qn;
- n n—1
=0 =5 — 1‘18{"}1] - 11{8"[‘3.‘“]'

Finally, to find the probability for (' to win, we observe that this can
happen only if ¢ wins the second game; hence,

_Rn=Pf1="ii{_i4IS [ ]
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Since P, + Q. + R. < 1, the differcnce

nt+l ) n—1
1P Q= R— s UT ) s ) sl
represents the probability of a tie in n games.  This probability decreases
rapidly when n increases, so that in a long series of games a tie is prac-
tically impossible. If the number of games is not limited, the proba-
hilities P, Q, R for A, B, C, respectively, to win are obtained as limits of

P., @,, R., when n increases indefinitely. Thus

P=Q =4, R = 4. Q
Problems for Solution ¢\

1. Three urns contain respectively 1 white and 2 black balls; 3 wh.it;c:?i.nﬂ 1 black
ball; 2 white and 8 black balls. One hallis taken from each yrn. Wh’at is the proba-

blht} that among the balls drawn there are 2 white and 1 black?/; Ans. 23,
—#2, Cards are drawn one by one from s full deek. What JS\the probability that
10 eards will precede the first ace? AniI44 65 = 0.03938,

8. Urn 1 contains 10 white and 3 black balls; urn 2 (‘\n,tams 3 whie and 5 black
balls. Two balls are transferred from No. 1 and placedin"No. 2 and then one ball is
taken from the latter. What is the probability thatifisa white ball?  Ans. 591 4.

4, Two urns identical in. appcarance eontain rc&p&ctlvelv 3 white and 2 blacik balls;
2 white and 5 black balls.  One urn is :,electcd anr}a ball taken from it. What is the
probahbility that this ball is white? & Ans. 814,

B. What 1s the probabilitythat ﬂbmt}b&mm ilie French lottery all have one-
dlglt numbecrs? " Ans, /ﬁ.pﬂ,egﬁ = 29.1077.

6. What is the probability that eauh of the four players in a bridge game will get a
1-2. 13)*

‘ N m2 TR 4,474,107,
% What is the probabﬂjt}\hlat at Jcast one of the players in & bridge game will
get a complete suit of cards?
48131391 — 72 (131)2- 261 4- T2 (130)¢
;fl\ﬂ,.g 521 = 2.52 . 1071,
See Sce. 5, pa,ge\i\

8. Trom. api'drn with a white and b black balls # balls are taken. Find the prob-

ability of drawing at least one white hall. Amns. The required probability can be

expressedifi*two ways. TFirst expression:
/N L 9 3

\ ) B B —~1) - - (b—n+1) '
@ra+s-1 - @+d-n+1D

complete suit of cards? i i*,\ Ans. 24

Second expression:
a b b —1) - - B —n+2)

a—i—bLl +a+b—1_+ o +(a+b—1)(a +b-2) - (a—l—b—~n+l)]

Equating them, we have an identity

b b -1 - - - b —n4+D)
e e Y e P ey B
_atd =1 - B-n+1) ]
e I @+bda+b—-1. - @+b—n+1)
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9. Three players 4, B, C in turn draw balls from an urn with 10 white and 10 black’
bails, taking one ball at a time. He who extracts the first white ball wins the game.
Supposing that they start in the order 4, B, €, find the probubilities for each of them
to win the game. Ans. For 4, 0.56584; for B, 0.29144; for €, 0.14271.

10. If » dice are thrown at a time, what is the probability of having cach of the
points 1, 2, . . . 6, appear at least once? Tind the numerical value of this prob-
ability for n = 10. Ans.

pn =1 —68(5)" +15(3)" — 20(3)" + 15(§)" — 6 (§)" .
P 02718
Q!

Hiw: Use the formula in Sec. 5, page 31. :

11. In a lottery m tickets are drawn at a time out of the total number of'n tickets,
and rcturned before the next drawing is made. What is the probabili&'y\that n k&
drawings each of the numbers 1, 2, . . . n will appear at least once? \dns.

- Hrom k+n(n-1) n - m kn—m—.lr"‘":“‘ .
¢ 1\ = 1-2 n B

12, We have k varieties of objects, each variety consistingrof the same number of
objects, These objects are drawn one at a time and replacded before the next drawing,
Find the probability that n and no less drawings will hq}equired to produce objeets of
all varieties. Ans. o\

i, = (b~ )71 — }f.:_lgr, — 2),;—1’4‘_:..% (h— 3yt — - -,

13. Three urns contain r‘gs“ﬁ\é"dﬂ\l?eﬁgg g%{'al{ey:.%rgﬁcr‘-k bailg; 2 white, 1 black balls;
2 white, 2 black bells. . One ball is tramgfrred from the first urn into the second; then
onc from the latter iz transferred{into the third; finally, one ball is drawn from the
third urn, What is the probability of its being white? Ans, 23g.
14. Each of n urns COIR%IS a whitc and & black balls. One ball is transferred
from the first urn into the setond, then one ball from the latter into the third, and so
on. Finally, one ball iz taken from the last urn.  What is the probability of its being
white? Ans. Denofe ¥y px the probability of drawing a white ball from the kth urn.

Il

I

Then o \u
NV ¢ +1 a
QO - 1 -
.~'§ Pr+t a+b+1m+a+b+1( )
for & =\.I:,:2, . ..n — 1. Hence,
P a4+ b

16. Two players A and B toss two dice, A starting the game. The game is won
by A if he casts 6 points before B casts 7 points; and it is won by B if he casts 7 points
before A casts 6 points. What are the probabilities for A4 and B to win the game if
they agree to cast dice not more than # times? What is the probability of a tie?
Anas. Probability for A:”

pa = HI — (3§51 if n=2m
pe =1 — Q) f n=32m+L

Probability for B:
gn =8 — (P i  n=2m
gn = HI1 - G507 i r=2m + 1



*

42 INTRODUCTION TO MATHEMATICAL PROBABILITY  [Caap. 11

Probability of a tic:
re = {15F}m if n o= dm; re = F{E35)™ if n=2m+ 1.
If n increases indefinitely, r. converges to 0 and pa, ¢. converge to the limits
p-ih  ¢=#,
which may be considered ag the probabilities for 4 and B to win if the number of
throws is unlimited.

18. The game known as “craps’ is played with two dice, and the caster wins
uncopditionally if he produces 7 or 11 points (which are called “naturals’™); he loses
the gamein case of 2, 3, or 12 points (called “craps™).  PButif he produces 4, 5,608, 9,
or 10 points, he has the right to cast the dice steadily until he throws the sgm® hum-
ber of points he had before or until he throws a 7. If he rolls 7 before obtajiring his
point, he loses the game; otherwise, he wins, What is the probabilityzo win?

Ans. 238497 = 0.493.

17. Prove dircefly the identity In Prob. 15, page 37. R
Solution 1. Let O
b bl — 1 b — 1) — Doy
o b 0= e - 16 -9
¢ efe—=1)  cle — 1)e —\\2}
where b is a positive integer and ¢ > b. Then _ L™
b O
ele, b) = ;[1 +elgc b —1)]
whence www,dbrau.ljig‘t-a’ry.org.in
1 N\t 2 3
ele, 1) =~ elend) = ——3 ol 8) =
e 24 c—1 c—%9
and in general .2 i:\\
b\ - b
O e b +1
Takingc =a + b —'\I,,\We have
O 1teesb-1y =2E0
O\ e
Solut"isiifﬂ. The polynomial
./
) b b =1
N/ S(x)=1+-x+¥x2+-..
¢ cle — 1}

ean be presented in the form of s definite integral

B@) = (e +1) _];‘(1 — HL — D)P( — Pvdg
whence

e+1  atd
c—b+1-_ T

1
S(1) = (e + 1)L A — & *dg =

fe=at+tb-—1
18. Find the approximate expressions for the probabilities P and Q in Prob. 15, .
page 36, when b is a large number.  Take for numerical application ¢ = b = 50, :
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Solution. Since P + @ =1, it suffices to seek the approximate expression for
P -.Q Now

P-@-= _];‘(1 — 26p(1 — p)eidg

1 .
P-Q=§J;(l—u)"( wg) du 4 S22
L]

To find the approximate expression of this integral, we set

whenee

L\ N\
“= u)h(l - E) me .\:\'
whence u cah be expressed as a power series in v: . \“\
2 ata-1 125”+(2b+a-,-',f);';3ﬂ“.

YT ra—-1 @te_17 30 1 o =2)%
Bubstituting the resnlting expression of du/dv and integrai-ing with respect to o
between limits 0 and =, we obtain for P — @ an asy@piotic expansion whose first
terms are '\ @

X

P _0 o [ 4 +a -1 ] Cafl2st + 26 +a— 12 (—1p

T%+a—1 T @ a1y (@ +q — 1)9 2002,

A morc detailed discussion #evex1s BT aRY:O0E ¢ls approximate formula is less

NN — 1 — -1 22
than a(}4}*1(24)*! and greater 'than’ ,_a[fi(}(a 1()25 +?(E It ) -+ 320%) provided

b2 12. Fora = b = 50 the fo@ﬁula yields
P—(Q=03s18 P =06650; @ =0334L
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CHAPTER III

REPEATED TRIALS

1. In the theory of probability the word *“frial’” means an attempt to
produce, it a manner precisely described, an event E which is not cextain.
The outcome of a trial is called a “success” if E occurs, and a ““failyre’ if
E fails to occur. For instance, if E represents the drawing of, €#¢ cards
of the same denomination from a full pack of cards, the ¢ trLal conasts
in taking any two cards from the full pack, and we have 8 SUCCOSS OF
failure in this trial according to whether both {ards are of the same
denomination or not. R\

If trials can be repeated, théey form a *'series? o trials. Regarding
series of trials, the following two problems natyrally arise:

_a’ What is the probability of a given nufuber of successes in a given
series of trials? And as a gencralizationfefvthis problem:
..,b What is the probability that the "number of successes will be
contained between two g\{\» en II['IE}ET Lnarygoyen scries of trials?

Problems of this kind are am(mg Hhio 08k important in the theory of
probability.

2. Trials are said to bedl mdepcndent” in regard to an event E if
the probability of thise ent in any trial remains the same, whether
{he resulis of any numb\ of other trials are known cr not. On the other
hand, trialg are “de’pendont” if the probability of E in a certaln frial
varies according to tHe information we have about the outcome of one or
more of the other trials. .

As an ple of independent trials, imagine that several times in
successiop) We draw one ball from an urn eontaining white and black balis
in glven proportion, after cach trial returning the ball that has been
drdwi, “and thoroughly mixing the balls before proceeding to the next
frial.” With respect to the color of the balls taken, wo may reasonably
assume that these trials are independent. On the other hand, if the
balls already extracted are not returned to the urn, the above deseribed
trials are no longer independent. To illustrate, suppose that the urn
from which the balls are drawn, originally contained 2 white and 3 black
balls, and that 4 balls are drawn. What is the probability that the
third ball is white? If nothing is known abouf the color of the three
other balls, the probability is 24, If we know that the first ball is white,
but the colors of the second and fourth balls are unknown, this proba-
bilityis 4. In general, the probability for any ball to be white (or black)

44
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depends essentially on the amount of information we possess about the
color of the other balls. Since the urn contains a Hmited number of
balls, series of trials of this kind cannot be continued indefinitely,

As an example of an indefinite series of dependent trials, suppose that
we have two urns, the first containing ! white and 2 black balls, and the
second, 1 black and 2 white balls, and the trials consist in taking one
ball at a time from either urn, observing the following rules: (a) the
first ball is taken from the first urn; () after a white ball, the next is
taken from the first urn; affer a black one, the next is taken frow™the
second urn; {¢) balls are returned to the same urns from which theywere
taken. <O

Following these rules, we evidently have a definite se;ries: of trials,
which can be extended indefinitely, and these trials séve’dependent.
For if we know that a certain ball was white or black the probability
of the next ball being white is 14 or 24, respectwely

Assuming the independence of trials, the probablllty of an event E
may remain constant or may vary from ongybrial to another. If an
ynbiased eoin is tossed several times, wg h&ave a series of independent
trials each with the same probability, lghfer heads. It is easy to give
an example of a series of independent trials with variable probability for
the same event. Ims, ine tance th%t we have an unlimited
number of urns with w 1te an lfl‘g S s, Efut that the proportion of
white and black balls varies irom urn t¢ urn.  One ball is drawn suc-
cessively from each of thesd wrns. Bvidently, here we have a series of
trials independent in r. rd to the white color of the ball drawn, but
with the probability of %{amng & ball of this color varying from trial to
trial.

In this chaptm‘\we shall discuss the simplest case of series of inde-
pendent trials fith constant probability. They are often ealled “Ber-
noullian series.of trials” in honor of Jacob Bernoulli who, in his classical
book, “Al‘s\con]ectandl” (1713) made a profound study of such serieg
and waglcd to the discovery of one of the most important theorems in
the"theory of probability.

3! Considering a seriss of n independent trials in which the probability
of an event E is p in every trial (that of the opposite event F being
q = 1 — p), the first problem which presents itself ig to find the proba-
bility that E will occur exactly = times, where m is one of the numbers
0,1,2, ... n Inwhat follows, we shall denote this probability by 7.
In the extreme cases m = n and m = € it is easy to find T, and T,
When m = =, the event £ must occur » times in suceession, so that T,
represenis the probability of the compound event EEE . . . E with »
identical components. These components are independent events, since
the trials are independent, and the probability of each of them is p.
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Hence, the compound probability is

Ta=p-p-p - - p (ntimes)
or
T. = p*.

The symbol T'¢ denotes the probability that E will never oceur in
trials, which is the same as to say that F will oceur n times in succession.
Hence, for the same reasons as before,

To=¢"= (1 — p)

Q"
O\
When m is neither 0 nor », the event consisting in m occurrences of B
can materialize in several mutually exclusive forms, each, qf “‘which may
be represented by a definite succession of m letters E andp = m letters F.
For example, if n = 4 and m = 2, we can distinguish. ﬁhé following mutu-
ally exclusive forms correspondmg to two occurrétess of E:

EEFF, EFEF, EFFE, FEEF, {E}}E FFEE.

To find the number of all the differéhi”successions consisting of m
letters E and » — m letters F, we obsgrve that any such succession is
determined as soon as w@“kggpguimap;agpg iaccupied by the letter E.
Now the number of ways to selesk m places ouf of the total number of
n places is evidently the number of combinations out of n objects taken
m at a time. Henee, the Jy»lmber of mutually exclusive ways to have
m guceesses in # trials i 1&\

qm:;_;n(n—l) o (a-m41)
"“ 1-2-83---m

(N
The probghility of each succession of m letters E and n — m letters F,
by reason/ol>independence of trials, is represented by the product of
m factorgp and n — m factors ¢, and since the product does not depend
uponjtﬁe order of factors, this probability will be
men—m
for each succession. Hence, the total probability of m successes in »
trials is given by this simple formula:
. ——n(n_‘l)"'(n_m—l'—l)mn“m
- Tm = 123 --m P4

which car also be presented thus:

_ nl s
(2) : o = mﬂ 'S "
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This second form can be used even for m = 0 or m = = if, as usual,
wo assume (! = 1. Either of the expressions (1) or (2) shows that T,
may be considered as the coefficient of ¢™ in the expansion of

(g + pt)*

aceording to ascending powers of an arbitrary varizble &, In other
words, we have identically

(g4+p = To4+ T+ Tat2 4 - - - 4 Totn A
For this reasen the function SO\
(g + pi)® O
is called the “generating function’ of probabilities Tn! Tl, T,, v T
By setfing { = 1 we naturally obtain Q\
T0+T1+Tz+"‘+T.1\T1.

4. The probability P(k, {} that the num i';&f successes m will satisfy
the inequalities (or, simply, the probability“ these inequalities)
k= m»“t i

where k and [ are two given 1 m(%lé'geﬁélibcigl{ %asri{yl%e found by digtinguishing

the following mutually exclusivé events:
m =k or "‘%—k—}-l or m =1
o~
Accordingly, by the the em of total probability,
P(k l) Tk + T;;-H + + T;

7

or, using exgresmon (2},

m\“\ ) Pk, 5 = Em‘(n —mP
\ 3
In particular, the probability that the number of successes will not.
be greater than [ is represented by the sum

PO, = ¢+ for + “(’"i Dprgr g

nin — 1) - (n_'l_,_l)lm-l
+ TEREER

Similarly, the probability that the number of successes in = trials will
not be less than ! can be presented thus: :
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n—1y-- - m—1+4+1)

P, n) ="~ T R

-1
p‘q“‘*lil +?+ 1%—!—

=) <]

where the series in the brackets ends by ifself.

- B, The application of fhe above established formulas to numerical
examples does not present any difficulty so long as the numbers with
which we have to deal are not large.

] Exzample 1. In tossing 10 coins, what is the probahility of having exaetly 5 llc\ads?
" Tossing 10 different coins at once is the same thing as tossing one coin 10 t\.i:ums, il all -
the eoins are unbiased, which j2 assumed. Henee, the required probability“is given
by formula {1}, where we must take » = 10, m = 5, p = ¢ = 14 andiithis

o < 3
10.9-8.7-6 1 252 o
—_— . = =02 A
1-2-3-4-5 2¢ 1024 N\

Example 2. If a person playing a eertain game can wie $1 with the probalility
© 14, and lose twenty-five conts with the probahbility 3-:5,,’.\bmt- is the probability of win-
ning at leagt $3 in 20 games? Lot m be the numb.ef\o'f‘ timeg the game is won, The

total gain (considering a loss as a negative gainParill be '

m — 20 — m) = Sw.— 5 dollars
and the condition of the proplem am%ﬁffb%%;igﬁgghld not be less than §3. Tence
%’{n "7’ 5 ; 3!

whence m = 624 or, sinee m is an jﬁteg(,:r, m = 7. That is, in 20 trials an event with
the probability 15 must happeuiat least 7 times and the probability for that is:

. 0
N _____2_0_!___ (-1'>m(g>2u—m‘
D5 m!{20 — m)IN3 3

”.\ m=T7

This sum conta;:imi (¥4 terms; but it can be expressed through another sum containing
only 7 terms,{)@eause
. N\

20,3 : 6

Ny 20! 1y 2\ ™ 20! AWEA N

«(‘Emt@o — m)"t(é') (é) =1- Em!(% —m) :(5) (E) )
m=7 m=0

Using the last expression, one easily gets 0.5207 for the required probability.
6. In the series of probabilities v

To, T, Tsy ... Ta

for 0, 1, 2, . . . n successes in n trials, the terms generally increase till
the greatest term 7, is reached, and then they steadily decrease. For
instance, if # = 10, p = ¢ = 14 the values of the expression

2T
> ... 10 are
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1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1
so that Tsis the greatest term. For obvious reasons the number g (to
which the greatest term T, in the series of probabilities Ty, T1, . . . Ta
correzponds) is called the ““most probable’ nuraber of successes.
To prove this observation in general, and to find the rule for obtaining
#, we observe first that the quotient

T m+ 1 N\
decreases with increasing m, so that A
AN
T]_ Tg Ts T,, o \"..
i -z == N
(a) T~ T, > T, > > T, O

—_— = —

T q Tn—l RGN
AN

and if » 1z large enough, the first of them is“s‘é “1 and the last < 1. To
find exactly how large n must be, we notie€\that

LN "

N

www.dbraﬂfibr"«‘al:y,org,jn

if N
np> g =1-—7p
whenee - {m\\
O
a1 %-
Similarly, \
\:\"' T{‘: <1

it §

P < ng or 1 — g < ng
whenge :

3P
" Consequently, if » + 1 is greater than both 1/p and 1/¢, the first term
in (@) is >1 and the last term is <1. As the terms of (a} form a decreas-
ing sequence, there must be a last term which is =1. Let it be

Ty
T

1
1>
n + z

Then
™ T,

ﬁ"—o>ﬁ>".>Tﬁ‘_
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and
T T T
i »il a2 e . *
> 7, > T g P T
or, which is the same, '
T0<T1<Ts<"‘<Tp_1éTp
T_u = Tp+1 s Tp+2 =t >Tm-

In other words, the sequence of probabilities increases till the greatest
term T, 18 reached and steadily decreases from then on. Besides\T,,
there may be another greatest term T,—i; namely, when 7., ='7,;
but all the other terms are certainly less than T,. The nu\rftbbr PRt

perfectly determined by the conditions N
T, _n—ptlp,y  Tur_n—pgll)
Tt s ¢ T, Tk ide

which are equivalent to the two inequalities
NS .
(n+lpzulptq, np —J\q;j‘é w(p + q).
These in turn can be presented thus: AWV

.ué(n-l—l)p,’?;a-’rl

. . dbraulibvary.org.in . . .
and show that u is umqu‘él\gr\ae -elr{i:nujme "4t greatest inleger contatned in

(n + Dp. If (n + 1)pisaniptdger, theny = (n + Dpand 7, = T,y
That is, there arc two greafost terms if, and only if, (n + 1)p is an
integer. (\J
Let us consider now %at happens if

M1gl o ma1sgl

O p q

."\‘0
In the first ¢ages all the terms in (a) are less than 1 with the single excep-
tion of thg‘fhﬂst term 7'/To which may be equal to 1; namely, when

n 4+l ) Consequently,

\ ;D

TvzTi>Ty> - >1T,

80 that T is the greatest ferm. If (» + 1)p < 1 the greatest integer
contained in (n + 1)p is 0, and there is only one greatest term To. If,
however, (# + 1)p = 1, there are two terms T4 = Ty greater than
others.

If (n + 1)g < 1, all the terms in series {a) are >1 with the cxception
of the last ferm, which may be equal to 1; namely, when (n + 1)¢ = 1.
Henee,

To<Ti< - €Ty 2T,
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so that 7' is the greatest term, and the preceding term 7T._; can be equal
to it enly if (n + 1)¢ = 1. Now the condition

n+1)g=1
is equivalent to

(n + L)p
On the other hand, because p < 1,
(n+Dp <n+ 1.

Therefore » is the greatest integer contained in (n - 1)p. N

Cemparing the results obtained in the [ast two cases (exclutie}l at
first) with the general rule, we see that in all cases the gredtést term
T, corresponds to N

= [(» + Dp). LV

If {(n + 1)p is an integer, then there are two greatest'te:nns T.,and T,
This rule for determining the most probable nup\be‘r of successes is very
simple and easy of application to numerieal em’@ﬁlples.

1%
=

QY

Examplel. Letn = 20,p = 3,4 = 3. Thém (n + 1}p = 8.4, and the grentest
integer contained in this number is ¢ = 8. Hence, there i3 only one most probable

= h ndi li
number of successes p = 8 w&%{:&r 2 g?lérgmgm u)}g Brubabl ity

20! {2Y% 3\
=13 = = (0.1797.
Ts 8[12“,()() 0.1797

Example 2. Let n = 11(],,”113X 14, g = %, and {n 4 1)p = 87, an integer.
Consequently, 36 and 37 are‘t@e ‘most probable numbers of succeszes with the corre-
#ponding probability

1ot /1Y 2\
2L 7, = OV g osor,
2 b= T 371731(3) (3)

7. Whenﬁr m, and n — m are large numbers, the evaluation of
probability.,‘%m by the exact formula
Ay nl
"\ ¥ oy = e W An—m
QO Tn = il =y
becomes impracticable and it is necessary to resort to approximations.
For approximate evaluation of large factorials we possess precious means
in the famous “Stirling formuia.” Referring the reader to Appendix 1
where thig formula is established, we shall use it here in the following
form:
log ! = log/2rz + zlog ¢ — = + w(z}
where
1

m < w(x) <

1 .
12z
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Tn the same appendix the following double inequality is proved:

1 1 1 _ 11
Tom ~ Tom — 1o1 < @) —elm) — o) < gt = ey
1
T T8

Now from Stirling’s formula

nl = +/2rn prentuin

o . N
and two similar expressions for m! and {(n — m)! follow. Substibuting
them into T, we get two limits O\

NS ©

p — ??,p ™ nq 'n—mQ \ \

®) o < g 2) (7 2%:)
np ng_ Y

@ To> l\/%m(n = m)( ) (ﬂ A m)\

whera AN

k= 612n+6 12m+b 1z(nim)+s

1 1 '[:
I = 312?1. 12m 12(‘11 m]l

When n, m, n — m aré”é‘fz‘éﬁ?ﬁ%iﬂé@k‘&ﬁf‘l&f@e % and [ differ litile from
each other.

Inequalities (3) and (4). then give very close upper and lower limits
for T, To evaluate pm{wert;

O meY (_ne N7
\ \m /] '\n —m

with large exRQh*entQ, sufficiently extensive loganthmw tables must be
available. “ff-such tables are lacking, then in cases which ordinarily
oCeur when ratios np/m and ng/{n — m) are cloge to 1, we ean usc
specm}ﬁhort tables to evaluate logarithms of these ratios or else resort fo

Ex{ﬂ Another problem requiring the probability that the number of
suceesses will be contained between two given limits is much more
complex in case the number of trials as well as the difference betwecn
given limits is a large number. Ordinarily for approximate evaluation
of probability under such circumstances simple and convenient formulas
are used. These formulas are derived in Chap. VII. Less known s
the ingenious use by Markoff of continued fractions for that purpose.

It suffices to devise a method for approximate evaluation of the
probability that the number of successes will be greater than a given
integer I which can be supposed >np. We shall denote this probability by
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P({f). A similar notation Q(I) will be used to denote the probability
that the number of failures is >I where again [ > ng. The probability
P(k, D) of the inequalities & £ m = ! can be expressed as follows:

PleD) =1-r() —Qn — k)
if I > npand k < np;
Pk, D) =Pk —1) — P

if both % and [ are > np; and finally A
PO =Qr—1—1)—Qn —k) \ -
oA
_if both k and { are < np. R\

For P(l) we have the expression
n! E+1n£1[ n—1—1p \s
PO=grptm—1-nF 7 ' 711z o

—_ —_ mn — D 1
vesteeesSEy o ]

The first factor
!l
{ n — [ —
¢+ 2«:\&? dblaullb%]_ y.or
can be approximately evaluated by the 'metho of the preceding section

The whole dliﬁculty resides in the evaluation of the sum

%Gtml—l)(n——l—-%() e
Z+2 T+ +3)
which is a partlcular caSo of the hypergeometric series

\.~
ala + DB+ 1),

P T =11
I?l+ !

§=1+"

+ -

In fact \\\
N )
~ F(—n+l+1 I—}—2—E)—S
4
Now, owing to this connection between S and hypergeometric series, 8

can be represented In the form of a continued fraction, Tirst, it is
easy to establish the following relations:

Fle, 8+ 1,y +1,2) =Fle, 8,7, 0) +

+ aly = B)p + + +
vy F 1) (e 1,8 1, 2, x
F(a I 11-337 133) =F(a,,8,‘7,$)

By
+x e +1)F( +1 8+1,v+ 2 z).
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Substituting ¢« + 2, 8 + 7, ¥y +2rnand e +n, 8+ 2+ 1, v + 2n + 1, .
respectively, for «, 8, v in these relations and setting

X2"=F(a+ﬂ,,8+n,'}’+2n,$);
Xon1 =FlatnB+n+lLy+2n+1 2
Brmy—atn  __ letmy—p+n)
G+ =1 T G 2+ 1)

for brevity, we have

&gy =

Xo =X, — axX,

X1 = Xg — (12$Xa N\
...... O\
Xm—l. = Xu — a'mme-}-l NS ©
whence ~\ )
X1 PN
R o

1 —
“—.%—-ﬂ L P
ot T3,
v Xm+1

In our particular case c,’:fk
X: = P(— w2 EETLYES, xo-1

and ag—g—1 = 0. o\

AN
Hence, taking z = <\§q’~.ﬁnd introducing new notations, we have a
finite continued fraction
‘."\}1
® S
Ny 1 — = dl
AN\ P+ T %
N\
. "‘:'.’ 1 + 11
~O ) ’ _“‘_”_: s
Q LT
where
T UF % -DUF 2k)q T UF AL 2k F D

Every one of the numbers ¢ will be positive and <1 if this is true for
1. Now

(n—1—1p
- (“““z Ty <!

if I > np, and that is exactly what we suppose. The above continued

4 =
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{raction can be used to obtain approximate values of S In excess or in
defect, as we please. Let us denote the continued fraction

Ck

= . d

T+T _ an

1 + -
by we.  Then
0 < wp < e
which can be easily verified. Furthermore, S )
_ 1 1 Co " ~
Sul‘-—w],, Wl 1+ wz—T ":‘dz
1— w O
and in general '
K7
Wy = G dx \ v

1 "wH—f 3

Havmg seleeted k, dependm f g:he d grec of approximation we
desire in the final rebult Cﬁﬁyneég? 0 1higes £ = 5 or less generally
suffices). we use the incquality

0¢ K\wm,.; < Cryt

to obtain two limits in deﬁe\P and in excess for wy.  Using these limits, we
obtain similar limits fcn' ;..m 1, Wiesy wr—3, - . . and, finally, for «; and S.

The series of np(‘ratmnb will be better 1llu%trated by an example,

9, Let us ﬁnd\approxnnately the probability that in 9,000 trials an
event with the nrébability p = 14 will occur not more than 3,090 times
and not legd than 2,010 tmrucs To this end we must first seek the
probablhty of more than 3 ,090 oceurrences, which involves, in the first
place\h‘.e avalyation of

90001 1\ 3091 /o) 5009
T = 3001159001 (g) (§) '

By using inequalifies (3) and (4) of Sec. 7, we find
0.011286 < Tper < 0.011287,

Next we turn to the continued fraction to evaluate the sum 8. The
following table gives approximate valuesof ey, €5, . . . csanddy, ds . . . ds
to B decimals and less than the exaet numbers
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n Cu d,

1| 0.95553 0.00047

2 | 0.95444 | 0.00094

3 | 0.95335 0.00140

4 | 0.95227 0.00187

5 | 0.95119 0,00234

8 | 0.95010

We start with the inequalities |
0 < ws < 0.95011 )

and then proceed as follows:

100234 < 1+ - < 104711 0.90&3{;},j\{%‘,5 < 0.04898
1.02041 < 1+ 5 d“ - < 1.03685;  0,91842 < o < 0.93324
LO1716 < 1 + 7 < 1.02113; 3 593362 < ws < 0.93728
1.01416 < 1+ 7 d* < 101514: 0.94020 < w, < 0.94113

ww@idbr auh[iml y.org.in
< ‘1‘0'0816, 0.94779 < w1 < 0.94810

\1 1
@021 < < 505190

ANL02161 < 8T wa1 < 0.02175,

100785 <1 + i

Hence, we knd);": i“'or certain that
~U7 002161 < P(3,000) < 0.02175.
By g,s'ﬁular calculation it was found that
,\:ii"' 0.02129 < Q(6,000) < 0.02142,
so\ﬁhfat
0.04290 < P(3,090) + Q(6,090) < 0.04317.

The required probability P that the number of successes will be contained
between 2,910 and 3,090 (limits included) lies between 0.95683 and
0.95710 so that, taking P = 0.9570, the error in ahbsolute value will be
less than 1.7 X 10—%,

Problems for Solution
1. What is the probability of having 12 threc times in 100 tosses of 2 dice?
Ans. Chy(p ) (E5)Y = 0.2257,
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2. What is the probability for an event F to oceur at least once, or twice, or thres
times, in a serles of n independent trials with the probability p?  Ans.
(a) 1 —1(1-p) B)1 — 1 —p)* 'l + (n — 1)p);
- 1in—2
@ 1-a —p)»-2[1+<n~2;p+ P ]

3. Whut is the probability of having 12 pomts with 2 dice at least three times in

1 throws? Ans. 0.528,
4. In a series of 100 independent trials with the probability 24, what iz the most
probable number of successes and its probability 7 Ans. p = 33; Ty = 0.0844.
NorE: Log 100! = 157.97000; Log 671 = 04.56195; Log 33! = 36.93869. ~N

B. A player wins §1 if he throws heads two times in succession; otherwise he losts
25 cents.  If this game is repeated 100 times, what is the probability that nmt]ier‘h.ls

gain nor loss will exceed $I? Or $5? Ans. N\
100! /1\2/3\*
SV LS} = 0.0403; -
(@) 20180!(4) (4) 0.0493; 0
oy 0L (1Y (Y[, 80 0.7 s0.79.78 8027078 - 77
- 20180M\4/ \4 63 ' 63-66 ' 636669 ' G380 60 - 72

6{) 6057 605754 c60FHT. 54 - 51

gV E s Tals- 83~+>W‘gg.—84] = 0.4506

Note: Log 20! = 18.38612; Log 80! = 118, 85;’173
6. Bhow that in a series of 2s trials with the grabability 14 the most probable num-
her of succcsses is & and the cor}'é‘s»ﬁthﬂh@%’@%ﬂit@r g.in

1:3-5™5 (25 — 1)

L= E
Show alse that )
!
T ———
N W2+ 1
HINT: P\
N 2.4-6 -2
Y T‘<3-5‘7---(23+1)

7. Prove tl}e‘fhluwing theorem: If P and P’ are probabilities of the most probable
number of gacoesses, rospectively, in n and n 4 1 trials, then P! £ P, the equality
sign heing E};cluded unless (n + 1)@ is an integer,

8. Silow that the probability Ty corresponding to the most probable number of

successes in » trials, is asymptotic to (2Zmepg) Y%, that is,
lim T/ 2wrpg = 1 as n— w,
9. When p = 13, the following inequality holds for every m:

T < \/ A
” T 1 2_6:"

n
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10. What is the probability of 215 successes in 1,000 trials if p = 147

Ans. 0.0154,
11. What is the probability that in 2,000 trials the number of successes will he
contained between 460 and 540 (limits Included) if p = 24, Ans. 0.964,

- A2 Two players 4 and B agrec te play until one of them wing a certain number of
games, the probabilities for 4 and B to win a single game being p and ¢ = 1 — p,

Howcver, they are forced to quit when 4 has o games still to win, and B has b games.
How should they divide their total stake to be fair?

This problem is known as “probléme de partics,” one of the first problems on
probability discnssed and solved by Fermuat and Paseal in their correspondence,

Solution 1. Let P denote the probability that 4 will win a remaining ganfeshcefore
B can win b games, and let § = 1 — P denote the probability for B to aih b games
before A wins @ games.  To he {air, the players must divide their commbnstake M in
the ratio P: @ and leave the sum MP to A and the sum MQ to B.

To find P, notice that A wins in the following mutually exclugwe WaYs:

«. If he wins in exactly ¢ games; probability p*. . ..~ “’

"

b, If he winsg in exactly ¢ + 1 games; probability c{p“q,."‘.'\\.

¢. If he wins in exactly ¢ + 2 games; probability\&(j;—i_Tl)pﬂq?.
.\ .

7. If he wing in exactlya + 5 — 1 games, probablllty

a{a +.1) Cee -lfa.—’[—_b — 2);00 —

Consequently -
o a a(a+‘3 ala+1) - -{a+5—-2) }
P = i = b
p"[ +lq+ \L\? T+ PRI 1
and similarly “
b(h + 1 bth +1) -« - (b 4a —2
Q- q61+“;+( it 4 --+(’t,;__.((atan }““]'
Show dll‘e(‘ﬂ& thatP +@Q =1
e

\Sblutmn 2. The same problem can be solved in a different way. Whether 4 or B

wins will be decided in not more than a 4 & — 1 games. Now if the players continue
to play until the number of games reaches the imit ¢ + » — 1, the number of games
won by A must be notless than . And conversely, if this number is not less than a, 4
will win & games before B wins & games., Therefore, P iz the probability {that in
¢ + b — 1 games 4 wins not less than a times, or

=ca+b—1>!mw[1+b__—le+<b—_1_J<b_—2J() P

al(d — 1! a+1lg (e+Lie+2)

B =D —2---2.1 (;9)"'1]_
@+D@+2) - @a+b—1\g

Bhow directly that both expressions for P are identical.
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HixT: Proceed as hefare,
13. Prove the identity

aln — 1) a(n —1) - (n—k+1)
i 1 —_n—ﬂ Lo
P-f-P ¢+ 12;0’9+ -+ 1.2.3.. %

J:)pxn—k—-l(l — x)hdy
J;lxn—k—q(] — z)kdx

Hiwr: Take derivatives with reapect to p. I\
v 14 A and B have, respectively, » + 1 snd » coins. H they toss their coius
simultaneously, what is the probability that {¢) 4 will have more heads thgn\B?
{b} 4 and B will have an equal number of heads? (¢} B will have mere heada{ha,n AT

Solution, a. Let P, be the probability for A to have more heads than‘B‘ This

probability can be expressed as the double sum &> ".
n+1 »n '\ ,\’ >
22»+1E E C:If("" py
r=1 a=0 \\‘;
Considering the coetlicient of £ in :\\
a+ z)f-+1(1 T 1) Q_".‘Eé)_"ff
we have L

AL dbrauhb'(.ary org.in

2 ConeR L e,
am( A\
Hence g"’z\
L vt
2
P M o 2 -
AN Gantl 2l
p. | \ / #=1

b. The probablhty Q\fbr A and B to have an equal number of heada is
\‘J g 1
i _ Ch
e L vt
J a=0
. ’Rbe‘ prubablhty R, for B to have more heads than 4 is
1y

Q

\

_ - 2n+l_
B = 9 9t
16, If cach of n independent trialy ean result in one of the m incompatible events
E., E;, . . . E, with the respective probabilities
Pupy .- Pmy Bt pat - A pa=1)
show that the probability to have Ir events By, ls events B, . . . I evenis B, where
i+t - 41, ==, is given by
n!
Poy .ot = Bipy - - ¢ P

Ll - - L
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YCHAPTER IV

PROBABILITIES OF HYPOTHESES AND BAYES’ THEOREM

i

1. The nature of the problems with w hmh we deal in this chapter may
be illustrated by the following simple example: Urns 1 and 2 contain,

respectively, 2 white and 3 black balls, and 4 white and 1 black\balls,

One of the urns is selected at random and one ball is drawn, d%. ﬁ*’ippenq :
to be white, What is the probability that it camc from the first urn? .
Before the ball was drawn and its color revealed, the prob‘a,blht\ that the -
first urn would be chosen had been 1/2; but th{, mdlcatlon of ithe color -
of the ball that was drawn altered this probablllty To find this new

probability, the following artificc can be used:

Imagine that balls from hoth urns are pui:\\tf)gether in a third urn,
To distinguish their origin, balls from the~fixst urn are marked with 1
and those from the second urn are manked with 2. Since therc are §
balls marked with 1 and the same number marked with 2, in taking one -

ball from the third ury.ge Mﬁgﬂ:@]},@%ﬁﬁeq to take one coming from .

cither the first or the second urmpand the situation is exactly the same
as if we chose one of the urng at random and drew one ball from it.
If the ball drawn from the phicd urn happens to be white, this can happen
in 24+ 4 =6 equally k(:ly cages. Only in 2 of these cases will the.

extracted ball have ilie murk 1. Hence, the probability that the white

ball came from the @r@t urn is 2¢ = 13.

The success of Bhis artifice depends on the equality of the number of
balls in both psse. It can be applied to the case of an unequal number
of balls ings hﬂ" urns, but with some modifications; however, it seems
preferable), to follow a regular method for solving problems like the
prec: cdlmg one,

2. JThe problem just solved is a particular case of the following funda-
mental: -

Problem 1. An event A can occur only if one of the set of exhaustive -

and incompatible events
By By, ... B,
coccurs. The probabilities of these events
(By), (Bs), . . . (Ba)

corresponding to the total absonce of any knowledge as to the occurrence
60

e atp e aan
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or nonoccurrcnce of A, arc known, Known also, are the conditional
probabilities
(A, B:); i=12 ...n

for A to occur, assuming the oceurrence of B, How does the proba-
bility of B; change with the additional inlormation that A has actually
happened?

Solution. The question amounts to finding the conditional proba-
bility (B:, 4). The probability of the compound event 4B; can be
presented in two forms

(AB:) = (B:}{4, By )

'\
or 4

(AB) = (AXB“A) nx

Equating the right-hand members, we derive the follo\mng expression
for the unknown probability (B, 4):
(B4, B BJ ¢

T A . ..\“

Since the event A can materialize in the mut'ually exclusive forms

ABy, ABy, OV AB,,

www.dbrawhbtary orgin

by applying the theorem of total pEobability, we get
(A) = (B)(4, By + (@z)(x‘l By + - - -+ (B.XA, B.).

It suffices now to mtroduc{\rﬁhlq expression into the preceding formula for
"(Bi, A) to get the finallexpression

(B;, 4) =

& (B)(4, B)) _
(BQJ’(‘J-l Bl) + (BZ)(A B) + + (B?e)(A; Bn)

This for a, ‘when described in words, constitutes the so-ealled
“Bayes' the\rcm However, i is hardly nccessary to describe its
confent,. ;n “words; symbols speak better for themselves. For that
reas ﬁ,s we prefer to speak of Beyes' formula rather than of Bayes’
theorath. Bayes’ formula is also known ag the *“formula for probabilities
of hypotheses.” The reason for that name is that the events By, By, . . .
B, may be considered as hypotheses to account for the occurrence of 4.

It is customary to speak of probabilities

1) (B, 4) =

(Bl)) (82)7 R (Bﬂ)
as a priori probabilities of hypotheses
B, B, ... By,

while probabilities

i

(B, A); i=12...n
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are called a posteriori probabilities of the same hypotheses.
3. A few examples will help us to understand the meaning and tha
use of Bayes' formula.

Example 1. The contents of urns 1, 2, 3, arc ag follows;

1 white, 2 black, 3 red balls
2 white, 1 black, 1 red balls
4 white, 5 black, 3 red halls

One urn is chosen at random and two balls drawn. They happen to be white apd red,
What is the probability thal they came from vrn 2 or 37 N\

Solution. The event A represents the faet that two balls fuken from the stlected
urn were of white and red color, respectively. To account for this fael, ‘\4"(:‘]'1;\1,\'0 three
hypotheses: The selected urn was Lor 2 0r 3. We shall represent, l.hcs’c}‘a}_’ potheses in
the order indicated by Bi, Bs, Ba.  Since nolhing distinguishes the,ur}}s, the probabili-
ties of these hypothoses before anything was known about 4 are.t }

L&
(B) = (Bs) = Ba) = % N
The prebabilities of 4, assuming these hypotheses, are
9, N\
(A: Bl) =4, (A] Bg) = %: ‘,’\(’-&r Ba) = '121"

It remaing now to introduce these values into forptula {1} to have a posteriori prob-

abilities TR

a1 55

R,, Ay dbhm@ibiary orgin 22 e
(By, AJ ’a"%f'ﬁl?'%'i‘%'f% 118

N 3o 30
_ T A = 7
Bl AN T v & 18
ne

and also, naturally, {
(B} =1 —(By A) — (Bs, 4) = .

Example 2. It is Kpown that an urn containing altogether 10 halls was filled in
the following mar'méz.:’A coin was tossed 18 timoes, and according as it showed heads
or tails, onc white‘er onc black ball was put into the urn.  Balls are drawn from this
urn onc at afinde] 10 times in suecession (always being returned before the next, draw-
ing) and every one turns out to be white. What is the probability that the urn con-
tains ];otliiifg but white balls? ’

Solution. The event A consists in the fact that in 10 independent trials with a
dc?hxit‘c but unknown prebability, only white balls appear. To account Tor this fact,
we have 10 hypotheses regarding the number of white ballg in the urn; namely, that
this number is either i, or 2, or 3, . . . or 10. The a priori probability of the hypo-
thesis B; that there are exactly ¢ white balls in the urn, according to the manner in
which the urn was filled, is the same as the probability of having ¢ heads in 10 throws;
that ig, :

100 1

{B:) = ;._TH(TZ-T)"@_“’ =12 ..

Granted the hypothesis B, the probability of A is

7 Zae
()

. 10.

.
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The problem requires us to find {Bi, A4). The cxpression of this probability immedi-
ately results from Bayes' formula:

1

Se(a)

i=]

{Bio, 4) =

The denominator of this fraction is -

14.247. ) £\
Hence
(Bu, 4) = 0.0702. O\

This probability, although still small, is much greater than 1{gg4, the a p(an prob—
ability of having only white balls in the urn.
If, instead of 10 drawings, m drawings have been made and at ea,eh dramng white

balls appeared, the probability (B, 4) would be given by “‘\\
. )
(Biy d) =g \:
> c;o(—) 0
=1 £ )

The denominater of this formula can be prescnmcl thus

S

witw . db auhbl Ry.org.in
( wj '

g =
Now .{"03\
v Ly mi
1
A\ - < 10
‘“.’\tl 10) )
and go PN/
LIy xt\w A 0 i 10
SS“@ ¢ E i _.1_0_( _Tﬁ)
NS m(l - E) < Clet =\l +e .
G5 im0
Hence 0%
" \ ¥ _11 =11
\/ (Bm,A)>(1+e 0

This shows that with increasing = the probability (B, A) rapidly approaches 1.
For instance, if m = 100
(B, ) > (L + 71971 > (1.0000454) 7% > 0.90054.
Thus, sfter 100 drawings producing only white balls, it is almost certain that the
urn contains nothing but white balls-—a conclusion which mere common sense would

dictate.

Example 3. Two urns, 1 and 2, contain respectively 2 white and 1 black ball,
und 1 white and 5 black balls, One ball is transferred from urn 1 to urn 2 and then
one ball is drawn from the latter. Tt happens fo be white. What is the probability

that the transferred ball was black?
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Solution. Herc we have two bypotheses: By, that the transferred ball was black,
and £, that it was white, 'The a priori probabilities of these hypotheses are

(BIJ = %’y (Bﬂ) = 3

The probabilities of drawing a white ball from urn 2, granted that B; or B, is trus,
are: b
{.4’1-) Bl) =13, {Ar By) = %

The probability of B, after a white ball has been drawn from the secoud um,
results from Bayes' formula:
N\

1,1t
Bnd) = 3573~

[~ {F=

O\
4. Problem 2. Retaining the notations, conditions, and, ddia of
Prob. 1, find the probability of maferialization of another event €

granted that A has actually oceurred. Conditional prababllltu %

\
(C, AB); i=12 ...x ~f;.\
are supposed to be known. N\
Solution. Since the fact of the oce urrem,a\of A involves that of one,
and only one, of the events PN
By, By, . \3\B,,

the event € (granted the omwﬂmpxdﬁﬁtél‘caﬂ fifterialize in the following
mutually exclusive forms

CB\CBQ, ... CR,.
Consequently, the probamlty (C, 4) which we are seeking is given by
(€, 4) = (Q}S’}, Ay 4+ By, AY + - - - + (CB,, A).

Applying thg{ iihébrem of compound probability, we have

OO (OB, 4) = (B AXC, BiA)

and N
NN

(«, a{)*— (By, A)(C, AB)) + (Bs, A)(C, AB,) + -
(Bﬂ, AXC, AB,).
It suffices now to substitute for
(Bi, 4}

1tb cxpression given by Bayes' formula, to find the final expression

2 (B(4, BXC, ABY)
@ (€, 4) = =—
2 (B4, B)

i=1
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It may happen that the materialization of hypothesis B, makes €
independent of A; then we have simply

(C, AB;} = (C, B,)

and instead of formula (2), we have a simplified formula

> (B4, BY(C, B)
(3} (C, 4) = ‘i‘{"\n— e,
> (B)(4, B)
i=1 .\:\
The event C ean be considercd in regard to A as a future even’t:.\ For
that reason formulas (2) and (3) express probabilities of futtre ‘events.
For better understanding of these commonly used te('hnicga:l terms, we
shall consider a simple example. "‘\

Example 4. From an urn containing 3 white and 5 blac}\balls, 4 balls are trans-
ferred into sn empty urn.  From this urn 2 balls are taken and they both happen to
be white. What is the probability that the third ball taken from the same urn, will
be white? ~‘ /

Solution. (&) Let us suppose that the two balls drawn in the first place are returned
to the second urn.  Analyzing this problen, we,fﬁ&f,tinguish first the following hypoth-
esos concerning eolors of the 4 b?@ Ly f%)ﬁtl‘ﬂ)flrggl;%rtgg gl{ﬁt urn. Among them, there

arc neeessarily 2 white balls.  Henee, there are only twdpossible hypotheses:

Bi: 2 whitelahd 2 black balls;
B3 3 whitd.and 1 black ball.

A pi'iori probabilities of these hﬁx}tl{eses Aare

O o s
2Oy B
"\.. 8 X
\V (Bs) = 6.6 _ 1, J
N : o T4 |

The eventfd"consists in the white eolor of both balls drawn from the second urn
The condii\ﬁg}ml probabilities (4, B1) and (4, B.) ere
) 4

(4, By =& (4, B:) = §{

The future event ¢ consists in the white color of the third ball, Since the 2 halls
drawn at first are returned, (' becomes independent of A as soon as it is known whieh
one of the hypotheses has materialized. Hence :

(C, ABY) = (C, By) =
(C, AB2) = (€, Bi)

Bl gy

]

Substituting these various numbers in formula (3), we find that

SRR VIE LR B S

_E-3 = L.
(€, 4) = [y | 12
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{b) If the two bs.ﬂ; drawn in the first place are not returned, we have
(C, AB) =0,  (C, ABy) = &

Ther, making usc of Tormula (2),

(o, 4

+Im
[
ol
o
=

7 B. The following problem can easily be solved by direct application
of Bayes' formula.

Problem 3. A scries of trials is performed, which, with Lertaln
additional data, would appear as independent trials in regard te\an eveng
B with a constant probability p. N

Lacking these data, all we knnw i3 that the unldlmui probablhty P
must be one of the numbers

..,\
PupPn - - - e \

and we can agsume these values with the rcspeo{we probabilities

o1, Gey o o .cxk\

In » trials the event £ actually oc curr(d kD times. What is the probha-
bility that p lies between the two given Jimits « and B=2a<gsl),

or else, what 13 the prubal&l\t’tg glgrta}%flel ?%119;'31 2 i inequalities:

. aSp =87
- A pattlculal CRSC INAY ﬂl\iqtmhe the meaning of this problem. In a
set of N urns, No, urng have white balls in proportion py to the total
number of balls; Nas urn s have white balls in proportxon Po; . . Ny
urns have white balls I proportion Pr. An urn is chosen at random and
n drawings of ond all at a time are performed, the ball being returned
each time bef@m%he next drawing so s to keep a constant proportion
of white balg\" It is found that altogether m white balls have appeared.
What is ‘the probability that onc of the Ne; urns with the proportion
i o'f"\wmte balls was chosen? Evidently this is a particular case of the
serieral problem, and here we possess knowledge of the necessary data,
provided that the probability of selecting any one of the urns is the same.
Solution. We distinguish % exhaustive and mutually exclusive
hypotheses that the unknown probability is py, or ps, . . . or p. The
& priori probabilitics of these hypotheses are, respectively, a1, as, . . . o
Assuming the hypothesis p = p,, the probability of the event % occurring
m times in % triais is

Crpr(t — porm.
Now, after £ has actually happencd m times in « trials, the a pos-

teriori probability of the hypothesis p = ps, by virtue of Bayes’ formula,
will be
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Crapi(l — pi)*"
k
D, Crapr(t — p)r™
i=1

or, canceling €7,

apTl — Py ™
F3

PHE — pym
aap( P N

Now, applying the theorem of totul probability, the probability P of\the

inequalities N
a<p=B N\
will be given by i e \ I
Ny
T EERPRY T N\
(4) P = Ea'p‘(l Pi) )
Emp’;‘(l — PPN
=1 \ W
“where the summation in the numerator reférs‘ to all values of p; lying
hetween o and 8, limits included. ».;

An important particular case anse‘s ‘when the set of hypothetical
probabilities is W, dbrﬁwhbl ary.org.in

1 . 2

?91—@ \pz=—: =1
and the g priori probab:hf‘ss of these hypotheses are equal:
¢ ; o _ .]_.
\::a;—ag—- —Ct’k-—k
Then the fl'a,cc‘,\f Y/ can be canceled in both numerator and denomina-
tor. The ﬁn"L ormula for the probability of the inequalities
aSp=Eg
will Q‘{ O
5 P = kz’pi (1 '_ pl)
S el — p)m
i=1

summation in numerator being extended over all positive integers ¢
satisfying the inequalities

ka =i 5 kB
In the limit, when % tends to infinity, the a priori probability of the
inequalities

liA
A

B

44

P
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is given simply by the length 8 — & of the interval (¢, 8). The a pos-

teriori probability of the same incqualitics is obtained as the limit of :

expression (5). Now, as k — =, the sums

i%k

= &

?; wn 1 'n.—'m.l ?: s 1 !'l—ml
SEC-075 = 209
i=ka i=1

tend to the definite integrals A

fﬁx'”(l — )y and j;lx’“(l — g, L OW
[23 :\’\ _
Therefore, in the limit, the a posteriori probability of the inequalities

aSp=g
is expressed by the ratio of two definite integrals

© o f zm(l — x)n—m@

f m"‘(l - a:)“ Yidx

This formula loads to the followmg, conclusion: When the unknown
probability p of an evend Fm,mnﬁyaw seghefween O and 1 and the a
priort probability of tts being co«ntdz’ned between limils e and 8 is 8 — «a,
then after n trials in which E mcurred m times, the a posteriori probability
of p being contained betwe n\a- and 8 is given by formula (6).

6. Problem 4. Asgwmptions and data being the same as in Prob. 3,

find the probability that in n trials, following » trials, which produced
E m times, the sanie) ex ent will oeceur m; times.

Solution. I&@uﬂices to take in formula (3)

;3\\(30 = a;; (4, B) = Copp(l — pyrr
and PR

9 {.'
%)

; (€, B) = Cppm(1 — p)mm
to ﬁé for the required probability this expression:
5
zaip\'m }—m;(l . p':)ﬂ+m—m—m1
(7 Q= Cmizl. —— — — S
> apr(l — py
i=1

Supposing again

=
-y

It

7,
3
i
=,
i~
=
i

ok

Eal N
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and letting k ~— e formula (7) in the limit becomes

1

xm+m1(1 _ I)n+m—m—midx
Q= Cx j; 1 :
f (1l — z)+de

1]

(8)

This formula leads to the following conclusion: When the unknoun
probability p of an eveni E may have any value between limits 0 and 1
and the o priori probability of its being contained belween o and B 48
8 — a (so that equal probabilities correspond to intervals of equal length),
the probability that the event E will happen my times in ny trinls f@u;’wing
% trials which produced E m times is given by formula (8). O

In particular, for n, = mi = 1 (evaluating integrals by.the known
formula), we have XY, \
Q=" +1 o

=g

This is the much disputed “law of succession”'és%blishcd by Laplace.
7. Bayes' formula, and other conclusioni{derived from it, are neces-
gary consequences of fundamental concepts'and theorems of the theory of
probability. Once we admit these fundamentals, we must admit Bayes’
formula and all that follows from ited®
But the question arised?” WHERHHAT T altous results established
in this chapter be legitimately applied? In general, they may be applied
whenever all the conditiona"c} their validity are fulfilled; and in some
artificial theoretical prob}&hié like those considered in this chapter, they
unquestionably are quitimately applied. But in the case of practical
applications it is ndt'¢dsy to make sure that all the conditions of validity
are fulfilled, though“there are some practical problems in which the use
of Baycs’ formfuln’is perfectly legitimate.® In the bistory of probability
it has happchéd that even the most illustrious men, like Laplace and
Poisson,~¥ent farther than they were entitled to go and made free use
prir}ciﬁaﬁy of formulas (6) and (8) in various important practical prob-
lerns\ Against the indiseriminate use of these formulas sharp objcctions
have been taised by a number of authors, especially in modern times.
The first objection is of & general nature and hits the very existence
of a priori probabilities. If an urn is given to us and we know only that
it containg white and black balls, it is evident that no means are available
to estimate a priori probabilities of various hypotheses as to the propor- .
tion of whitc balls. Henee, crities say, a prjori probabilities do not exist
at all, and it is futile to attempt to apply Bayes’ formula to an urn with
an unknown proportion of balls. At first this objection may appear
1 One such problem can be found In an excellent book by Thornton C. Fry, “Prob-
ability and Its Enginecring Uses,” New York, 1928.
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very convineing, but its force is somewhat lessened by considering the
peculiar mode of existence of mathematical objects.

Some property of integers, unknown to me, is not present in my
mind, but it is hardly permissible to say that it dees not exist; for it does
exist in the minds of those who discover this property and know how to
prove it.

Similarly, our urn might have been filled by some person, or selected
from among urng with known contents. To this person the a prior
probabilities of wvarious proportions of white and black balls might
have been known.  To us they are unknown, but this should not prevent
us from attributing to them some potential mode of existence @tlcast as

a sprt of belief, )
V/ To admit a belief in the existence of certain unknewn numbers is

common to all sciences where mathematical analysigyiy applied to the
world of reality. If we arc allowed to introduce the element of belief
into such ‘“‘exact” sciences as astronomy and phivdics, it would be ouly
fair to admit it in practical applications of prebability.

The second and very serious objection i Wirected against the use of
formula (8), and for similar reasons against formula (8). Imagine,
again, that we are provided with an yrn Fontaining an enormous number
of white and black ba]ls\,};},\gm‘tﬁ}%@%qwn proportion. Qur aim
is to find the probability that the“proportion of white balls to the total
number of balls is contained hetween two given limits. To that end, we
make a long series of trials 9@5 deseribed in 1’rob. § and find that actually
in » trials, white balls earcd m times., The probability we scek would
result from Bayes’ for;’}ﬁa provided numerical values of a priori proba-
bilities, assumed_onNelief to be existent, were known. Lacking such
knowledge, an arﬁitrm"y assumption is made, namely, that all the a
prion probablhhefs have the same wvalue. Then, on account of the
enormous @mber ol balls in our urn, formula (6) can be used as an
approxigaate expression of P. It can be shown that, given an arbitrary
p0§itiv~é number ¢, however small, the probability of the inequalities

p AW

" m
E e<p<;‘1-+e

can be made as near to 1 as we please by taking the number of trials
greater than a certain number N{¢) depending upon e glone. In other
words, with practical certuinty we can expect the proportion of white
balls to the total number of balls in our urn fto be contained within :
arbitrarily narrow limits
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A conclusion like this would certainly be of the greatest importance.
But it is vitiated by the erbiirary assumption made at the beginning,
The same is true of formula (8) and of Laplace’s “law of succession.”
The ohjection against using formulas (6) and (8) in circumstances where
we are not entitled to use them appears to us as irrefutable, and the
numerical applications made by Laplace and others eannot inspire much
confidence.

Ag an example of the extremes to which the illegitimate use of formulas
(6) and (8) may lead, we quote from Laplace:

En faisant, par exemple, remonter la plus ancienne époque de'l’hist.oire\é.
cing mille ans, ou & 1,826,213 jours, et le Soleil s’étant levé constamment, dans
cet intervalle, & chaque révolution de vingt-quatre heures, ily a 1,826,2J\;1 & I;arier
contre un qu'il se levera encore demain, . N

Tt appears strange that as great a man as Laplace coull make such a
staterment in earnest. However, under proper cor,ldi't.ic'ms, it would
not be se¢ cobjectionable. If, from the enormousmbimber N 4+ 1 of
urns containing each N black and white balls in allypossible proportions,
oue urn is taken and 1,826,213 balls are drawaiaind returned, and they
all turn out to be white, then nobody can dexy)that there are very nearly
1,826,214 chances against one that the ncxt ball will also be white,

whrRPtems, &oF b'%%lluifl %’%‘g in

1. Three urns of the game appeara.nog ‘hzwe the following proportions of white and

black balls:
Urn 1:4 \&hwe 2 black balls
Urn 2 \Q white, 1 hiack hall
Trf(& 2 whlie 2 black balls

One of the urns is selected and one ball is drawn, It turns out to be white, What

is the probability that ihethird urn was chosen? Ans. 14,
2. Urpder the samgh [‘,ondltlons, what is the probability of drawing a white ball
again, the first one sgafhaving heen returned? Ans, 14,

3. An urn confaining 5 balls bas been filled up by taking 5 balls from another um,
which ongma.ll\ 3d 5 white and 5 black balls. A hall iz taken from the first urn, and
it happens td\ }J(‘ black., What is the probability of drawing a white ball from among
the remaiding 47 Ans. 54,

47 Fromh an urn containing 5 white and 3 black balis, 5 balls are transferred into an
emptgecond urn.  Fram there, 3 halls are transferred into an empty third urn and,
finally, one ball is drawn from the latter. It turns out to be white. What is the
probability that all 5 balls transferred from the ficst urn are white? A=ns, M zq.

B. Conditions and notations being the samne as in Prob. 3 (page 66), show that the
probability for an event to occur jn the (n + 1)st trial, granted that it has occurred
in all the preceding n trials, is never less than the probability for the same event to
ogeur in the nth trial, granting that it has oceurred in the preceding = — 1 trials.

Hiwr: it must be proved that

& k k H
205‘.?:_&1 . Erxsp?_l = ( 2&;?"") :

i=1 i=1 il
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For that purpose, use Cauchy’s inequality

k 2 & &
(z;ﬁm) < Se S
i=1 i=1 i=1

6. Assuming that the unknown probability p of an event E can have any value
between 0 and 1 and that the a priori probability of its being econtuined in the interval
(=, #) is equal to the length of this interval, prove the following theorem: The prob-
ability a postcriori of the inequality

P Ee ~

after E has oceurred m times in » trials is equal to the probability of atJeasi m + 1
successes in # 4+ 1 independent trials with constant probability e. {See\ Prob. 13,
page 59.) O

7. Assumptions being the same as in the preceding problem,‘ﬁna upproximately
1he probability a posteriori of the inequalities A

Fie 2P = 4, .»\\\
it being known that in 200 trials an event with the prabability » has ocourred 105

ti_mes Ans. Using the preceding problem and appl@;g Markoff’s mnethod, we find
= 0.846.

8. An urn contains N white and black balls 1n u\known preportion. The number
of white balls hypothetically may he

0, 1, 2, NN

and all these hypothoses are couggraud!j‘bmg;fu%ﬁ%‘lﬁkely. Altogether n balls are
taken from the urn, m of which turied out to be white. Without returning these
balls, a new group of n1 balls is falken, and it is required to find the probability that
among them there ure m W}u’& balls. Naturally, the total number of balls is so
large as fo have n + 1, 4{( Ans. The required probability has the same expression

1
N f a:""'h"’l“_ — x)n‘-ni—m—m]dx
VY e le 2 —
P #) 1
’\~”~ J; 27“{1 _— x)u—mdx
a8 in Prob. ’pa.éé 69.

Polynohhnls ordinarily celled “Hermite's polynomials,” slthough they were dis-
eovered by Laplace are defined by

m\“ e
\‘ ~—de 2_

Hily) =

ki)

dy
The first four of them arc
Hiy) = —y; Hoigy =92 —1; Iy = —y*+3y;  Hyy) = y* —6y2 + 3
They possess the rermarkable property of orthogonality:
- -2
f W 2 o) . (yidy =0 when o
while
y!

f_ " TH,.(y)dy = +/Fmal.
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Under very general conditions, a function f{y) defined in the interval {(— =, 4 =)
can be represented by a series

) = ap + a Huly) + aHofy) + - - -

where in general

1 w ¥
- 2 .
ax k!\/ﬂf_ we J Hi(y)dy.

n
and At = ———
‘ 2l — a) N\

Let

R
I
1

provided ¢ < « < 1,
9. Prove the validity of the following expansion indicated by Ch. Jorda.’n‘ \
N

_(E-'_ 1) _— —pnm h T — 1 - ,"3" >
wmi(n — m)’x =2 -\/2_: [1 n+2 hH W) + ‘ 3
2 = (1n + Ball o) |
T B 2T Wt ]

for 0 £ x £ 1 where y 18 & new variahle connected to a‘,\ ’Bj‘the equrtion

~.
‘.

=¢+~_

Hriwr: Consider the devolo‘p‘mmdhraml’sbms-pblﬁqwncs polynomiala of the

function *

‘.'

I " R—m
fat =¢ (a: + ) (1 — %) for —hee Sy =kl — a)

flyy =0 if ck@r Ty < ~ha  or  y>h{ — a)
10. Assuming that thel t;ondlttons of validity of formula (6) are fulfilled, show that
the a posteriori probahi}itg} of the ipequalities

m“\\, < < — +t1||a______(ln—-a}; fx=g

can be e;;{)a,'nded into a convergent series
'"\ w4 =~
) 4
N\ » 2 ‘—g—‘d e 225 — (lln + 8)all =S
= me— — e _ e — -
Vo' T k20 + B)a(l — @)
When # is large and « is not near either to 0 nor to 1, two terms of this series suffice

to give s good approximation to P (Ch. Jordan). Apply this to Prob. 7.
Ans. 0.84585.
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CHAPTER V

USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS
OF PROBABILITY

1. The combined use of the theorems of total and compound proba-
bility very often leads to an equation in finite differences whigh, together
with the initial conditions supplicd by a problem itself, set%é§to deter-
mine an unknown probability. This method of attack is ¥eéry powerful,
and it is often resorted to, especially in the more difficulticascs.  In this
chapter the use of equations in finite differences, applied to a few sclected
and eomparatively easy examples, will be showw; but in Chap. VIII
wo shall apply the method to a class of imberesting and historieally
important problems. \ o

Certain preliminary explanations arginecessary at this point.  Again
we consider a series of trials resulting:iﬁ an cvent E or its opposite, F,
but this fime¢ we suppose ﬂa t ti\,%:_‘trials‘ are dependent, so that the
probability of K at a certain %1‘1;% Tay vary according to the availablo
information concerning the results of some of the other trials,

A simple and intcrest-ir\g ease of dependent trials arises if we suppose
that the probability of .E it the (n 4 1)st trial rcceives a definite value
e if E has happened {h'the preceding nth trial, and this value doces not
change whatever fupther information we may possess concerning the
results of trialg’préceding the nth. Also, the probability of ¥ in the
(n + 1)st tribl Teccives another determined value g if F failed in
the nth tri i, )no matier what happened in the trials preceding the nth.

We‘h}ﬁe a simple illustration of this kind of dependence, if we suppose
that drawings are made from an urn containing black and white balls in
al’é@mirn proportion, and that cach ball drawn is returnced to the urn, but
only after the next drawing has been made. 1t is obvious that the proba-
hility that the (» + 1)st ball drawn will be white, becomes perfectly
definite if we know what wasg the color of the ball immediately preceding,
and it remains the same no matter what we know about the colors of the
1,2 ... (n— 1)st balls.

If the trials depend on each other in the above-defined manner, wa
say that they constitute a “‘simple chain,” to use the terminology of the
late A. A. Markoff, who was the first to make a profound study of

dependent trials of this and similar, but more complicated, types. It is
implied in the definition of a simple ehain that it breaks into two sepa-
raie parts as soon as the result of a eertain trial becomes known. Fer
' 74
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instance, if the result of the fifth trial is known, trials 6, 7,8, . . . become
independent of trials 1, 2, 3, 4, and the chain breaks into two distinet
parts: the trials preceding the fifth, and those following it. If the
results of tnals 1, 2, 3, . . . (n — I} remain unknown, the eveut B
in the following nth trial has a certain probability which we shall denote
by Pa. Also, if it hecomes known that E happened at trial &, where
k < n — 1] the probability of E happening in the ath trial rcceives a
different value, p®. It is important to find means to determine the
probability p,, the a priori probability of ¥ in the nth trial when the
results of the preceding trials remain unknown; as well as to detexfune
the probability p® of E in the nth trial v«hen we possess the ?o\krtlw
information that E has materialized in the kth{k < n — 1) ttlaJ

2. Thus we are led to the following problem concernmg Qumple chains
of dependent trials: W)

Problem 1. The initial probability 3, of the ev Qlt "E in a simple
chain of trizls being known, find the prebability g, @i & in the nth trial
when the resulis of the preeceding trials remain“gompletely unknown.
Also, find the probability p® of E in the nth tt#8] when it is known that
E has happened in the kth trial where & <\gy~ 1.

Solution. In the nth trial the event! B can happen ecither preceded
by E in the {(n — 1)st trial, the srobability of which is Pa~1y OF preceded
by F in the (n — 1)st tnéiwﬂﬁghﬁﬁb%'ﬂ%{}ﬂfﬁ ighich 38 1 — pa_1. By
the theorem of compound probability, the probability of the succession
EE i3 p._ia, while the probabllity of the succession FE is (1 — pa-1)8.
Hence, the total probability P 15

L™
(1) ;D'n = apnwl\' ;8(1 - p::—l) = a - B)pn—l + 8-
This i= an or dmarg& equatlon m finite differences. It has a particular
solution N
\\ P = ¢ = const.
where c.is?‘determined by the equation
O
& ¢=(a— Be+ 8,
whence
= §
1+8—a

provided 148 — a5 0.1 On the other hand, the corresponding

1 1+8—a=0or «a -8 =1, we necessarily have « =1, § =0, which
means that & must occur in all the trials if it actuslly cccurs in the first trial, and
never aceurs i it does not actually oceur at the outset. This case, as well as the other
extreme cage in which « — § = —1 can therefore be excluded ms not possessing real

inferest.
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homogeneous equation

1l

Ya (ﬂ: - .G)yn—l

has a gencral solution
Yn = C(O’. —_ ﬁ)n-—l

involving an arbitrary constant C. Adding to it the previously found
particular solution, we obtain the general solution of (1) in the form

B 8
1+||3—a ’s\

The arbitrary constant C is determined by the initial condition

Pn = C(a - ﬁ)w_l +

B _
¢+ 1—:;('3—:—“ =M “"\,\.

g0 that finally

8 B —
m= et (g e -
If AV
-
WW\AP d bfgﬁlﬂi‘ﬁ‘y?mtg. in
we sce that p, does not depeincf oh n and is constantly equal to p;.  Be-
cause we may exclude t-lQ‘ cases @« — B =1 or « — 8 = —1, so that

a — § is contained betwéeh' —1 and 1, we may conclude from the above
expression that p,, if fioh constant, al any rate fends to the limit

N2 B
oA +B—a
. £\M .
as n mcrea%,s’mdeﬁmtely.
N

As t¢'p¥ we find in a similar way that it satisfies the equation
@.0" = apl, + B — pi,)

0}\tzhe same form as equation (1). But the initial condition in this
case is pff¥}; = a« because the probability of E happening in the (& -+ 1)st
trial is « when it is known that E occurred in the preceding trial. The
solution of (2) satisfying this initial condition is

- B l—«
i —-—+m_1+6-a

I14+8—a
As the second term in thie right-hand member decreases with increas-
ing » and finally becomes less than any given number, we see that the
posifive information concerning the result of the kth trial hag less and less

(a = By
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influence on the probability of E in the following trials, and in remote
{rials this influenee becomes quite insignificant.

Ezample. Ap urn contajns e white and b black balls, and a series of drawings of
one ball at & time is made, the ball removed being returned to the urn immediately
after the taking of the next following ball. What is the probability that the nth ball
drawn is white when! (a) nothing is known about the precedmg drawings; (b} the kth
ball drawn is white?

v

. . o — 3 a a
In this particular problem we have o = o I)B = . P = T3
and - ~
[ _ e .
Il+g—a a+b P ¢
Thua ;:\
a v AN
Po=mM =a +b‘ “\ a

(&
That is, the probahility for any ball drawn to be white is thé‘ﬁ\m]e gs that for the
first ball, nothing being known about the resulis of theprevious drawings, The
(& s, in this example, AN

¥4

expregsion for p)

W

* N B
Fa a+b+( D (+b{(a’+b—nw

8o, for instance, ifa = 1, b =2, n =5,k = 3;2
W de'EN.[. rary.org.in
P = L@ 3_10 &
“3.22 2’

the information that the third bal}\ﬁas white raizes to 14 the probability that the fifth
hall will be white; it would beo\% without such information.

3. The next problem chosen to illustrate the use of difference equa-
tions is interesting (h “several respects. It was first propounded and
solved by de Mp@ré.

Problem 2:\"In a series of independent irials, an event E has the
consiant probability p. If, in this series, E occurs at least r times in
successlppawe say that there is a run of r successes. What is the proba-
bility Ghbaving a run of r successes in n trials, where naturally n > r?

ﬁoiut&on. Let us denote by y. the unknown probability of & run of
rin n trials. In # 4 1 trials the probability of a run of r will then be
HYper1. Now, a run of r in n 4- 1 trials can happen in two mutually
exclusive ways: first, if there is a run of r in the first » trials, and second,
if such a run can be obtained only in » 4 I trials. The probahility of
the first hypothesis is ¢,. To find the probability of the second hypothe-
sis, we observe that it requires the simultaneous realization of the follow-
ing conditions:

(@) There is no run of r in the first n — r trials, the probability of
which is 1 — ¥, () In the (n — v 1}t trial, £ does not oceur,

foct
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the probability of which is ¢ = 1 — p. (¢} Tinally, E occurs in the
remaining r trials, the probability of which is p”.

As (@), (b), (¢) are independent events, their simultancous mate-
rialization has the probability

(1 — yu)gp".

At the same ti:rﬁe, this {s the probability of the second hypothesis.
Adding it to y., we must obtain the total probability #.,:. Thus

(3) Yarr = ¥n + {1 — #nr)p'¢ N

and this is an ordinary linear differcnce cquation of the or(Ler r+1,

Together with the obvious initial conditions O
o=y:=- " " =ga1=0 g f@"}".

it serves to determine y, completely for n = » —|—1;Y—I— 2, .... For

instance, taking » = r, we derive from (3)
w\,/

Yoo = 07 4 p’:\};}
Again, taking n = r + 1, we obtain ;

Yer2 = Pt 2p7g
and go forth. Although‘f‘ﬁ%é@éﬁ?ﬁﬁlﬁtﬁ?‘ﬁ% by step, we can find the
required probability y, for anygiven #, this method becomes very labori-
ous for large n and does not&hpply us with information as to the behavior
of y. for large n. It is pr&\erab]e therefore, to apply known methods of
golution to equation 63) First we can obtain a homogencous equation
by introducing z, €31 — y,. instead of y, The resulting cquation in
2, 18 : N _
(4) O Zot1 = Zn + P2y = O
and the @véspondmg initial conditions are:

TN,

== o =g, =1; =1-—p".

Fe could use the method of particular solutions as in the preceding
\oblem but it is more convenient to use the method of generating
functions. The power series in £

ol8) =&+ zE + e 4+

is the so-called generating function of the sequence z, 21, 2o, . . . .
If we succeed in finding its sum as a definite function of £, the development
of thig function into power serieg will have precisely z, as the coefficient

of & To obtain (&) let us multiply both members of the preceding
series by the polynomial

1 — E + gprsr-l-l'
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The multiplication performed, we have

A - &+ gttelt) =z0+ (& —2)t+ -+ + gy ~ 28 +
+ (3 — )b + e — 2+ gpEdFti 4 - - -

In the right-hand member the terms involving &+, g£+2, . . . have
vanishing coefficients by virtue of equation (4); also 2z — 2y = 0 for
E=1,23 ...r—1, while :

=1 and By — 21 = — P
20 that A
A= §+gpete(®) =1 - pg .
and ¢\
__l-py o'
G =

S

The generating funection (£) thus is a rational i@étion and can be
devcloped into a power series of £ according to the known rules. The
coefficient of £* gives the general expression fcq Zh.  Without any dif-
ficulty, we find the following expression for z{:’.\ .

(5) Zg = Py — ?7’49?*;":'
where N
www;‘ajprgtiliﬁrary.org.in

Bar = 2’(7:'1)1 f,._;,(q’p’)‘
m=1)

and B, i3 obtained by sqb%;éitutin g# — rinstead of ». If nis not very
large compared with r, a{i(mula (5) can be used to compute 2, and

. =1 — 2z,
For instance, 1fq=\ 20,7 = 5, and p = ¢ = 14, we easily find
Moo 5 % 10 1f 10 10
R\ - 64 ' 642 64F 32 64 B4
and{i{;ﬁde
N/ 2w = 0.75013

correct to five decimals; y» = 0.24987 is the probability of s run of 5
heads in 20 tossings of a coin.

4. But if » is large in comparison with r, formula (5) would require
so much labor that it is preferable to seek for an approximate expression
for z, which will be useful for large values of n. It often happens, and
in many branches of mathematics, but especially so in the theory of
probability, that exact solutions of problems in certain cases are not of
any use. That raises the question of how to supplant them by con-
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venient approximate formulas that readily yield the required numbers,
Therefore, it is an important problem to find approximate formulas where
exact ones eease to work, Owing to the general importance of approxi-
mations, it will not be out of order to enter into a somewhat long ang
complicated investigation to obtain a workable approximate solution
of our problem in the interesting casc of a large n.

Bince ¢(£) is a rational function, the natural way to get an appropriate
expression of 2, would be to resolve ¢(£) into simple fractions, correspond-
ing to various roots of the denominator, and expand thosc fractions in
power series of . However, to attain definite conclusions folloging this
method, we must first seek information concerning roots of j:{w\equation

1— ¢+ gpgtt =0 O
5. Let
JE=t—1—att )
where )
a=p(l — p).

When p varies from 0 to 1, the maximt}.n(.:(}f 'p'(l — p) is attained for
p = -—_%—-1 and is 7/(r + 1)+ s0 t-ha’tta‘ = r/{r 4+ 1)t in all cases.
To deal with the most mterestmg fJ wc shall assume
www.d
&) £ p <rFi T + r+ 1
which involves ¢ \
.r!'
" NGRS VEL
and we leave 1t t\o "the reader to discover how the following discussion
should bBQMIﬁed ip = + T

%eﬁ} starts to increase from 0, the function f(#) steadily increases
and a¢ta¢ns a positive maximum for £ = & where

Q r+ Datp =1
after which f(£) decreases steadily to negative infinity., Hence, there
are two positive roots of the equation f(¢) = 0: &, which is less than

r+1

N

» and another root greater than this number. This root is 1/p if

condition {6) is fulfilled.

The remaining roots are all imaginary if r is odd and there is one
negative rool among them if r is even,

Now we shall prove that the absolute value of every imaginary or
negative root is >1/p. Let o be the absolute value of any such root.



Spe. 8] USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS 81

We have first
floy =p—1—apt <0

g0 that p belongs either to the interval (0, £1) or to the interval (1/p, + =),
and if we can show that p > % then p can be only >1/p. If the root we
consider is negative, p satisfics the equation

Fp) =140 — aptt =0

and sinee F(p) increases till a positive maximum for p = §& is reached, and
then deereases, the root of F(p) = 0 is necessarily >&. If £ = p'f;‘\’ is
ab imaginary root of f(§) = 0 we have, equating imaginary part

_ sin (r + 1)6 O
(7) ar LI 1 \"
But, whatever 8 may he w& “

sin {r + 1)@

<
sin 8 r-{-l

{ \ o
the equality sign being excluded if sin ¢ 750\ Henee,
(- + Dagerd
which implies p > &. Th\%“‘é‘ﬁ'afl&ﬁ%fgﬁiéaWW‘gdmpletely proved.
6. The equation NNy
§\ 1 — afrfl =
can be exhibited in the\@rm

:gi” tHat — 1

Sui:»stltutmiﬁ,:\r== pe*® here, and again equating imaginary parts, we get
R ap™tlsin v = sin @
and,\t{g}xﬁbining this with (7),

_sin {r + 138, (sin r0)" &in @ )
T Tenre 0 T [En @+ DEH

. 8in me, | .
1 The extreme values of the ratio 5 {n integer > 1) correspend to certain

roats of the equation m sin ¢ cos m@ = sin mé cos 8, but for every root of this equation

gin mé ™
- = =m
sin 8 V14 (m® — 1) ginte

The equality sign is excluded if sin # differs from 0.
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If the imaginary part of § is positive, the argument # i contained ;

between D and #.  In this case, 1t cannot be less than &1 OT greater

T
—T 8
than = v For,if 0 < 8 < | ]
sin 'm’:' sin (r 4+ 1)8

e~ 18

or
gin rf r N\
SnlrF 10" r 41
N\

At the same time O

. sin g S 1 ~\ )

sin {(r 4+ 1387 r 41 ,.'}: ’
and hence ~ \\

_ { sinvg " sin 8 ) 7
* = \&n & ¥ 1S sin (7 + KQ r + D+

which is impossible. That 8 rannot b& greater than » — follows

s
r+1
simply, because in this cmeyrsaﬂhr@uﬁhda}@f wndisin r6 would be of opposite
signs and s would be negative, £3 -

As " _T: i Z0=x "i?%l’ we have

O sin § > p sin + e
On the other hqnd sinz > 2x/rif 0 <z <w/2andp > 1/p. Hence,
~d
.&x”' _ pgin # > (?‘—_&_21)?]
Th,Q ,lma,gmary parts of all complex roots have the same lower bound
2
r+ o

of their absolute values.
7. Denoting the roots of the equation f(§) = 0 by

k=1,2,...r41)
we have
r+1

~ 1-— p& ( g)_l
o(®) gu TG A b '
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Henee, expanding each term inte power series of ¢{ and collecting
coefficients of £, we find

r+1
E 1 - pk &
A-p& 7+ 1 —r&x

For every imaginary root, we have

(1 _ psk)fk s + ]-q_ nt2
A= Dae +1 =8 @ =p)F A
gince A\ o
A
1 (r K p

D L :
Ei<n fod<m o 2

If r is odd, there are » — 1 imaginary roots and the pa{tun the €Xpression
of 2, due to them in absolute value is less than

+ D -1 . N
L A A —— < u+2
T~ T wp
The term corresponding to the root I/p fvgmshes} so that finally
1~ 24, ¥ A
"= T -pa s Dﬂgﬂ'f o’
where 6] < 1 and #; denotey the least positive root of the equation
AR\
o ;,__ + fE!‘+l == [}_
\il. £+ gqp

If r is even, there isfmne negative root. The part of 2z, corresponding
to this root is less {fian

xt\‘“: 2pn+2
A& _gpnTE
:\\,,.' {1 — pr
The whole'contribution due to imaginary and negative roots is less than
7
\M\‘; v TQ ,pw-i 2 < pn+2
(1 — p) 1—1p

in absolute value. Thus, no matter whether r is odd or even, we have

1 —ph &" r
= e # L -1 <e<l.
(8) z)'l (1_10)51 ?'+1"T£1+ _p’p 1
This is the required expression for z,, excellently adapted to the case of a
lurge value for n, since then the remainder term involving 8 is completely
negligible in comparison with the first principal term.



84 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cuar. ¥

The root & can be found either by direct sclution of the trinomial
equation following Gauss’ method, or by application of Lagrange’s series,
Applying Lagrange’s series, we have

holtat SEHDELY G D,

+ j@;}r D +2) - - (r+l-1)

lOg El lt )
=2 ) N

both series being convergent if |«| < r7/(r <4 1)7*! and thw umdltmn is
satisfied.

8. Let us apply the approximate formula (8) to the caa(‘ p=g=1
and r = 10. Using Lagrange’s series, we find that, 77

£ = 1.0004909
and ) \\ \
- 50
= 1.002947 - (1, 00049@9) * 5

Hence, for n = 100, 1,000, 10,000, r,eigpect-wely,
2y uwpdRaetibr et Hiho74

so that, for instance, the pxobai)ilit.ies of a run of at least 10 heads in
100, 1,000, or 10,000 thl;{l’ﬁiﬁ of a coin are, respectively,
)

\\ 0.0441; 0.3854; 0.9926.

Thus, in 10,000 thtows, it is quite likely that heads would turn up 10 or
more times in &uecnssmn

In general{for a given r and increasing n, the probability y. tends to 1,
80 that ]IQ& very long series of trials, runs of any length are oxtreme]y
hikely to vceur, a conclusion whieh at first sight secems paradoxical.
MB\I‘n the preceding examples, an unknown probability was deter-
Hgﬁe"d by an ordinary equation in finite differences. Very often, how-
ever, probability as a function of two or more independent variables is
defined by a partial difference equation in two or more independent
variables, together with a set of initial conditions suggested by the
problem itself, A few examples will suffice to illustrate the use of
partial equations n finite differences and to give an idea of the two
principal methods for their solution; namely, Laplace’s method of
generating funections, and the less well known,'but elegant, method
proposed by Lagrange.

We start with an analytical gsolution of the problem which was dis-
cussed in detail in Chap. IIL
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Problem 3. Find the probability of exactly z successes in ¢ inde-
pendent trials with the constant probability p.

Solution by Laplace’s Method. Let us denote the required proba-
bility by yz:; To obtain 2z successes in i trials can be possible only in
two mutually exclusive ways: (a) by obtaining = successes in ¢ — 1 trials
and a failure at the last trial; (8) by obtaining suceess at the last trial
and x — 1 successes in the preceding { — 1 trials. The probability of
case (@) 3s g¥, .1 and that of case (b) is pyr1,~1. The total probability
¥a,e 8atisfies the equation

{9) Yzt = PYoli—1 + GYxi-1
for  all positive © and 2. This equation alone does not deterfmn}' Yzt
complptely, but it does so in eonnection with cerfain initial tohditions.

.

These conditions are N

Q"

Yzo =~ 0 if z > 0, ""\\ /
{10} \J
Yoe = ¢ if t = 0.\.
. . A" . .

The first set of equations is obvious; the second set is the expression
of the fact that if there are no suceesses W\Pirials, the failures occur £
times in succession, and the probability fov that is ¢

Following Laplace, we 1@t§‘?’d&1§e a{[{ff a given ¢ the generating function

of Yo.e; Yo Yoy - - - » bhat s, the pom Sorabyessin
w{E) = you + yh{E + 92.352 + = 2!{:,:5”‘

z=0

Taking ¢ — 1 instead Qf}\ separating the ﬁrst term and multiplying by

g, we have O™
A%

\:\“ gora(E) = qyoe—1 + zqys.:q&’;
\ "4 r=1
and simjla@s{’l}
) *
\ ) pEpia(f) = Epyz—l,:_—lﬁ”-
' =1
Adding and noting equation (9) we obtain
(Pt + Qo) = @(£) + Wor1 — Yoo
but because of {10}
Qo1 — Yo = ¢ — ¢ =0
and hence,

elf) = (Pt + Des(d)
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for cvery positive £, Takingt = 1,2, 3, . . . and performing successive
substitutions, we get

el(8) = (P& + eold)

and it remains only to find

wolE) = Yoo + Y10 + Yaod® +

But on account of (10}, 4.0 = 0 for > 0, while 0 = 1. Thus, i
eo(§) = ~
and

o) = (pE+ o "\‘\

'\
To find ¥, it remains to develop the right-hand membet it a power serles'.;
of £ and to find the coefficient of ¢2.  The blnomlal t’(iem'em readily gives

Yor = 1t 1)1 - .(t. xa-, + I)rngt—

| N

10. Poisson’s Series of Trials. The.gmlalyti(:al method thus enables
us to find the same expression for prebabilities in a Bernoullian series
of trials as that obtained in Chap. ITEby elementary means.  Considering
how simple it is to arr@w@aﬁmlﬁxmsmgnp it may appear that a new
deduction of & known result_is\Not a great gain. But one must bear in
raind that a litéle mud1ﬁ{-at10n of the problem may bring new difficnities
which may be more eaﬂlly\)vercome by the new meothod than by a general-
ization of the old €. ‘Poisson substituted for the Bernoullian series
another series of .?%(’pendent trials with probability varying from

trial o trial, so that in frials 1, 2, 3, 4, . the same event E has different
probabilities #iz,)ps, P, ps, . . . and correspondingly, the oppositc event
has probabilities ¢,, s, ¢5, 44, . . . where g, = 1 — p,, in general. Now,

for the l"vr@aon series, the same questmn may he asked: what is the

probabﬂny Yz, OF obtaining & successes in ¢ trials?  The solution of this

ggnetahaed problem iz eagier and more clegant if we make use of differ-
\ané equations.

First, in the same manner as before, we can establish the equation in
finite differences
(11) Yot = Pefe—1,i—1 1 Gz 1.
The corresponding set of initial conditions is
Yoo = 0 if x>0

(12} Yoe = 1z ' " Gs if t >0
o = 1.

Giving ¢,(}) the same meaning as above, we have
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qtsot—l(é) = o, 1 -+ Eq:y:.t—-lsz

=1

Pikees(8) = 3 plfsrmik,

D]

whenec
(Psf + 9':)9’:-1(3) = ¢ilf) + Q¥o.-1 — Yo
but hecause of (12)
Soe—1 — Yo = e " @ — 1Ge - "Gy = 0, ™\
and thus A

odf) = (pd + edea(d) L™

whence again « N
edd) = (i + @)k + 1) - - - (it + @)D
However, by virtue of (12}, @(£) = 1 so that finally \
edf) = (it + gt + 00 - - (B ..
To find the probability of 2 successes in ¢ trigls in Poisson’s case, one

needs only to develop the product x\
(Pt + @)(pat + 00 - SApk + 90
according to ascending poww\g to find the coefficient of £=.

11. Solution by Lagrange's ]3:'Ie1;lE;_L IaWeMQ%aﬂ now apply to equa-
tion (9) the ingenious method dq}nse{{ by Lagrange, with a slight modifica-
tion intended to bring into fulllight the fundamental idea underlying this
method. Equation (9) pos\si}:sses particular solutions of the form

\ gt
if « and 8 are conqqc\t’éd ~by the equation
‘j\’? af = p + g
Solving this ,{quatmn for 8, we find infinitely many particular selutions
W\ a*{g + pa?)!

wh ré\fas ’is sbsolutely arbitrary. Multiplying this expression by an
arbitrary function o(a) and integrating between arbitrary limits, we
obtain ather solutions of equation (). Now the question arises of how
0 choose p(a) and the path of integration to satisfy net only eguation (9}
but also initial conditions (10). We shall assume that ¢(e) is a regular
funetion of a complex variable « in a ring between two concentrie circles,
with their center at the origin, and that it can therefore be represented in

this ring by Laurent’s series

ela) = 3 coot.

A= —




%
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If ¢ is a circle concentric with the regularisy ring of ¢(a) and mtuated
ingide it, the integral

Yo = asHg + paYela)da

is perfectly determined and represents a solution of (9). To satisly
the initia) econditions, we have first the set of cquations

L.J‘a’_lqo(a)da =0 for =123, ...,

which show that all the eoefficients ¢, with negative sulmﬂ‘ptq vanish,
and that ¢(a) is regular about the origin. The r-wum(l spt of equations
obtained by setting = 0

27N
1 ‘~

P

f(q+ pe "1)‘”( ) o g for "t\; 0,1,2

serves 1o determine la). lieizsa sufﬁnig&}iﬁl& small complex parameter,
this set of equations is entirely equivali\ixt‘t-o a single equation:

f qa(a)da:;. _ 1
ot e« — ‘ go) 1 — eqg

WW W dbrau ;bl ary org.in
Now the integrand within the tircle ¢ has a single pole ao determined by

the equation

~\ ay = e(p + qe)
and the cor re&:pondk{‘g res;due is

%

 ea0)
N \ 7 1 — Q_‘E
At the saams’i}lme this is the value of the left-hand member of the above
equatlpi}’so that
™~ plow) 1

”\:\ 1—ge 1= qe
ot

ela) = 1
for gll sufficiently small ¢ or «. That is, ¢(a) = 1 and

t
Yoo = ’2‘1‘;1_—'3 ca"—‘(q + 2) o

is the required solution. It remains to find the residue of the integrand
that is, the coefficient of 1/« in the development of

t
- p
(o+4)
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in series of ascending powers of . That can be easily done, using the
binomial development, and we obtain

Yau = Cipg=
as it should be.

12. Problem 4, Two players, A and B, agree to play a series of
games on the condition that A wins the series if he succeeds in winning ¢
games before B wins b games. The probability of winning a single game
ispfor Aand ¢ = 1 — pfor B, so that each game must be won by either
A or B. What is the probability that A will win the series? N\

Solution. This historically important problem was proposed 8% an
exercise (Prob. 12, page 58) with a brief indication of its solut{on based
on elementary principles. To szolve it analytieally, lot usﬁonote by
Yz: the probability that A will win when 2 games remamfon him to win,
while his adversary B has ¢ games left to win. Conmdermg the result
of the game immediately following, we dmtmgmsl‘i\t“o alternatives:
{a} A wins the next game (probability p) and has to win # — 1 games
before B wins { games (probability y.-1:); (b}\A loses the next game
{probability ¢) and hag to win x games befbre B can win { — 1 games
(probability #...5). The pl‘(}b&bllltle‘i of\these two alternatives being
PYsr,e and gy, their sum is the tdtal probability y.. Thus, y..
satisfies the equation WWW-de.E}*iﬁﬁl‘ary.OI*g.ln
(13) Yot = P”y:’;&h( + s

Now, ¥, = 0 for ¢ > 0,%hich means that A cannot win, B having
won all his games. Also, g’ = 1 for ¢ > 0, which means that A surely
wing when he has no mbre games to win. The initia} conditions in our
problem are, therefore,)

ONY Yo =10 if z >0
(14) SO

\‘.
NS Yoi=1 i t>0

The S'ymhol 0.0 has no meaning as a probability, and remains undefined.
For th&sake of simplicity we shall assume, however, that g0 = 0.
SApplication of Laplace’s Method. Again, let

‘PS(E) = Yz + ya;,!.f + y:.%sz +

be the generating funetion of the sequence ¥..0; Y1} Yz » « . COI-
responding to ar arbitrary £ > 0. We have

gEoe() = 2 qyaeat’
t=1

Ppei{E) = PYsmr0 + zpyam,:t‘
1=1
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and

gEoE) + Peei(f) = PYaaso + Dy (PYarrs + WaiDE
=1

or, because of {13),

QE(P::(E) + p‘P:—l(E) = PYz—10 — Yo + (03:(5)-

Now, for every x > 0

yzn=yz—10=0 O\
in conformity with the first set of initial conditions, which a,levs us to
present the preceding relation as follows: O
‘Pﬁ(E) = 1 5@2—1{5), ,:
O\
whence \V
But PANY
‘ N/ E
= 2 R £2 3 R
@o(£) = yoo + Yo,1f + yn 25 j_brmhblarygmg £ + £+ T—¢

and finally N\

£p
o‘*@ dT-51 — ¢

It remaing to de\relop\le right-hand member in a power series of § and
find the eoeﬂicxent Qf 5‘ As

@ ig=s+zﬂ+£3

£
and \\
SN 1 T z(z + 1) —|— 1)
'S _ T = z 252 .
we readily get, multiplying these series according to the ordinary rules,
1 1)y - - - t— 2
yos = o 14 T 1 S Dy poo g ekl Gl

which coincides with the elementary solution indicated on page 53.
Application of Lagrange’s Method. Equation (13) has particular
solutions of the form
C\‘."’Bt
where
af = p8 + qa.
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Hence, we can either express a by 8 or 8 by . Leaving it to the reader
to follow the second alternative, we shall express o as a function of 8
and seek the required solution in the form

e I
Yo = %.me(ﬁ)dﬁ

where ¢{(8) is again supposed to be developable in Laurent’s series in &
certain ring; ¢ is a circle deseribed about the origin and entirely within
that ring. Betting x = 0, we must have

Q"
L 3 - — N

%J;ﬁfp(ﬁ)dﬁ =1 for £=1,2,3,... O

and this set of equations is satisfied if we take AL
1 o
e * 1‘

o(8) = + ﬁa R Y. e

N ve b \
ow we have AN

P f BB
et = ori o1 - qﬁ")”‘(B =Y
_ P Lt db]“a‘l.l.ld}‘jary org. ]n
0T o ) TR0 - )
as it should be, becanse for [B ’> 1 the integrand can be developed into a

power series of 1/8, the term with 1 /ﬁ being absent. Thus, the required
solution is given by \

and fort =0
=0

7 B~idg
AP T 2 ) T = gD = D)
where ¢ is ascirelé of radius >1 described about the origin. The final
expression, f‘oﬁ“ is obtained as the coefficient, of 1/8 in the development

of
£\

zﬁk-l

A% T VE-D
into power series of 1/8. We obtain the same expression as before.

Problems for Sclution
1. Fach of » urns contains @ white and § black balls.  One ball is transferred from
the first urn into the second, another one from the second into thc third, _an_d so on.
Finally, s ball is drawn from the nth urn.  What s the probability that it is white,
when it is known that the first balt transferred was white?

1=,
Ans —i—b (a+b+1)
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9, Two urns contain, respectively, ¢ white and b black, and & white and o blagk
balls. A serics of drawings is mnade, according to the following rules:
a. Each time only one ball is drawn and immediately returned to the same urmn it |
came from, ]
b. If the ball drawn is white, the next drawing is made from the first urn.
. If it is black, the next drawing is made from the seeond wn.
d. The first ball drawn comes from the first urn.
What is the probability that the nth ball drawn will be white?

4 ]+1a—- B
m' "._——"‘ —_ -
Py To\a 1 b

3. Find the probability of a run of 5 in a scries of 13 trials with constant prob- -

ability p = 4. Ans. yis = 23.370 — 7037 = (NJ314184.
4. How many throws of a coin suffice to give a probability of mopd tl\nn 999 for |
a run of at least 100 heads? Ans. 176G+ 108 hedws suffiee.
B. What is the least number of trials assuring a probablhty ofy 215 for o run of af |
least 10 successes if p = ¢ = 147 " N Ans. 1,420,
8. Seven urns contain black and white balls in the fol I(th proportiomns: :
TDE. oo 1l a NY 4| s ‘ 6 | 7
N e N
WRILE. .o e | 1NNye |2 | 8] 2 ‘ 3 | 4
Black . d TNV 2 1 5] | z l 5
l %

One hall is drawn from cm}mmﬂbxﬁﬁiﬁbu&r@@mabablht\ that there will be among
thom exactly 3 white balls? 1 ;' Ans. Coefficient of £ in.

o DG Dl PEE+ DO+ P+ DEE+ D

oT £ 3
2 W

N\ g2 = 0.28023.

7. Two players,.Cagh possessing $2, agree to play o series of games. The prob-
ability of winningaalsingle game is 14 for both, and the loser pays $1 to his adversary
after each gamexWFind the probability for each one of them to be ruined at or before
the nth gamed™

Solutied Lot y. be the probability that after playing 2m games, neithoer of the
playerg 1§ ruined. We have

P L '\’ ’ Ymp1 = %ym
\ani;l Thence
1
yﬂ - 2“‘ )
s . 1 1
The probability for one of the players to be ruined at or before the nth gameis 5 “omht

ifn =2morn =2m 4 1.
B. Holve the same problem if cach player entors the game with §3.
Ans Y — LA™ 1 n =2m - 1orn = 2m
9. Players 41, Ay, . . . 4,41 play a series of games in the following order: first 4s
plays with As; th(‘ loser is out and the winner plays with the following player, As; the’
loser is out again and the next game is played with A4, and 8o on; the loser always being
out and his place taken by the next following player. The probability of winning &
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single game is 3¢ for each player and the series iz won by the player who succeeds in
winning over all his adversaries in succession. What is the probability that the
series will atop exactly at the zth game? What is the probability that the serics will
stop before or at the xih game?

Selution. Lot g, be the probability that the series terminates exaetly at the zth
gume. That mesns that the player who won the game entered at the (z — n 4 1)st
game and won successively the n following games. Now, there are n — 1 cascs
to be distinguished seccording as the player beaten at the (s — n 4+ Ulst game has
glready won 1,2, 3, . . . »n — L games. Let px be the probability that the loser in the
(z — n < 1)zt game previously has won £ games. The probability of ending the
serics in thig esse 3s pe/2%  On the other hand,

N
Pe
ok~ YrE L\
s0 that o\
?_)f _ Ha-k " S
on 2 "%
Hence, forx > n m'\'\"
i 1 1 v/
Yr = _é'yx—l —+ ;yx—‘! + -+ é:":;_\:—n-i-:-
Initial conditions: ' \ w
O\Y 1
O S O ey

W w.dbrguﬁfn"ary org.in

“Q" - EN‘J(] B E)
2
viFmt bt =
N/ 2»—1(] — f + gj_‘:)

L\

%

The generating function of y.:

N\

and the generating funp{i"qrfbf the probability that the series will end before or at the

zth game is ¢ ,\‘
\O” poafy _
O 2
"\::; -1 &
e

3
10. Thres players, A, B, C, play a series of games, each game being won by one of
them. If the probabilities for 4, 8, ¢ to win a single game are p, ¢, 7, find the prob-
ability of 4 winning a games before B and C win b and ¢ games, respectively.
Solution. Let 4. ,.. denote the probability for A to win the serics when he has
still to win # games, while 8§ and € have to win ¥ and z games, respectively. First,
we ¢an establish the eguation

Aave = Ploctpe + gz iy Frdey e

Next, Aqq.. = 1 for positive g, 2, snd A. . = 0 for positive x, z; 44,6 = 0 for posi-
tive z, 3. Besides, although this is only a formal simplification, we shall assume
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Apne =0, Azyo =0 when z or y or z vanishes. For the generating function of °
y: P |

bty ) = 3, Asetint

20
we find the equaiion
- P
‘i'f(gr 7!'] = 1 — 7k — rn‘f’x—l(f; ’1)
whenee 3
_ i _ tn ) 3
¢ = G T A= B0 =9 A
The final answer is ;
1 1 D) UL \

Aune -p«[1+ i+ WU T e r Ve e ] --

the dash indieating that powers of g and r with the exponents ;b”aud = ¢ are omitted.
Ohviously, the same method ¢an be extended to any numberof players, and leads
to a perfectly analogous expression of probability. "’\
11. An urn contains » balls aliogether, and among théni\g vwhite balls. In o series
of drawings, each fime one hall is drawn, whatever itg tolor may be, it is replaced by

a white ball. Find the probability %, that after Kdmwmgs there are x whitc balls
in the urn.

Solution. The required probability satlsﬁes the squation

LY \}‘_dlra,},‘rlﬁ;ﬂﬁﬁ‘l AT E: i;:yx‘r-

S

Besides,

Yap = L, y:o=0~:if *#a, Fr=0 if x < a.

From the preceding equ\zmcm, combined with the initial cenditions, we find sue-

cessively
(&)‘f‘.‘
Har =00
3\::.: _ a-+1y\ oy
2% e ol () - ()]
: :J; _ln—dn—a-1)fa 2\ a+ 1Y ’
,,,\“\' Yayzr = 12 [( p -2 T —l-(:—t)]

4 50 on.

12. If, in the problem of runs, ¢ is supposed to be > h—_—;—i, prove that the probahil-
Eal

ity of a run of r in » trials is greau;r than

1 __( P +f(p + 5} ottt
r =+ Upy 2 1—-p

T
where p; < | 18 & Toot of the equation

# = p) = p(1 ~ p).
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12, To find an asymptotic expression of probability for a Tun of rin n independent
trials, if p 2 —_l_—l; the fellowing proposition is of importance: Imaginary and nega.
v

tive roots of the cquation

(G—ser —zd+s=0 0<ss—
n—1

are. in absolute value, greater than the root R > 1 of the cquation

(1—3)R»-R+scosz%=o. O
. » '\\ A

Prove the truth of this statement. P\ N

14. Civen s urns containing the same number n of black and white balls\in’known
proportions, drawings sre made in the following manner: first, a single ball’ is drawn
ot of every urn; sceond, the ball drawn from the first urn is placed/into the second;
that drawn from the sceond is placed in the third, and so on; finally,”the ball drawn
from the last urn is placed in the first, so that again every urn Gundins » balls.  Sup-
posing that this operation is repeated ¢ times, find the proba@lity of drawing a white
hall from the zth urn. AN

Solution. Let iz, be the Tequired probability. First, it can be shown that it
salisfies the equation ¢ \%

i A\
Yuot =v»(\-]r wdg)agﬁl‘@'&:gngih

The initial probabilities yie ¥z - - m yod are known; and, moreover, the function
4e.; must satisfy a boundary condition of the periodic type, #o,i = %, Henee,
applying Lagrange’s method, the.ﬁoj]}owing solution is found

8

_ IAY Nty #HE=D
Yuo = (1 - n) {f(w)‘—j:.}.._.(n — l)j(:c 1+ 2 = l)af(x 2) + . ]
where :f\'“:

N\

\w: &) = Y when z >0

"\
and the deﬁrxi’gi:)n is extended to z = 0 by setting
A
O H(=2) =5 — ).
If, to begin with, all urns contain the same number of white and black balls, so that
f{z) = const, = p, we ghall have, no matter what £ is,

1Y 1y
Yot = p(l N _.) (1 + ) - P
/) n—1
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CHAPTER VI

BERNOULLYS THEOREM

1. This chapter will be devoted to one of the most important and
beautifu! theorems in the theory of probability, discovered by Jagob
Bernoulli and published with & proof remarkably rigorous {save fox some
irrelevant limitations assumed in the proof) in his admirable pqsl:'lhu\nous
book “Ars conjectandi” (1713). This book is the first attempt-it scien-
tific exposition of the theory of probability as a separates branch of
mathematical science. RS [,

If, in n trials, an event E occurs m times, the nuber m is called the
“frequency’’ of K in n trials, and the ratio m/xk teceives the name of
“relative frequency.” Bernoulli’s theorem reyéals an important proba-
; bility relation between the relative frequengy of £ and its probability p.

Bernoulli’s Theorem. With the probabilily approaching 1 or certainty
as near as we please, we may expect thatdhe relative frequency of an event E
in a series of tndependent trieths SHERUBRSIENI G RBUbILity p will differ from
that probability by less than any gigh number ¢ > 0, provided the number
of trials is taken sufficienily lavge)

In other words, given ;W'Q\positive nambers e and 5, the probability
P of the inequality N\

ki

;*P

N < €

will be greatefthan 1 — 4 if the number of trials is above a certaln
limit dependinhg upon ¢ and 4.

Prop,fj..f; Several proofs of this important theorem are known which
are,shotter and simpler but less natural than Bernoulli’s original proof.
?ﬁg his remarkable proof that we shall reproduce here in modernized
orm,

¢. Denoting by T, as usual, the probability of m successes in n trials,
we shall show first that
&) Tt < Do
T, < T,
fb>oandk > 0. Since the ratio

._l..

=

Tes

T,

8
w3

o i

Tz
o6
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decreases as © lncreases we have for b > a

Tory . Topa e < T

Tb Ta o Ta+1 -T:

Changing b, a, respectively, intob + l,a 4 ;b +2,a +2; -+ * b+ k,
a -+ k, it follows from the last inequality that

Tb-i—-k Tb-[—k— i T&-{— 1 Tb
<l o« ol
Tn+k Ta—]—ic—l Ta-l—l Tc,
that is, N\
Tb+k Tu-Hc 7 ¢
Tb < Ta. ' \"..\

WA

b. Integers A and g being determined by the inequalities N\ \ -
A—=1<np =M ,u.-—-].(np%-ne.ﬁq;\,

the probabilities A and € of the inequalities v/

&

m n
Oé;a——p<e; poly

are represented, respectively, by the sums | \
A = Ty Hhraw hrary oty Fa—1
C =17+ TM+L;£» -+ T,

the first of which contains g — A g terms. Combining terms of the
second sum into groups of ¢ termk (the last group may consist of less than
g terms) and setting for brew

A1 = T» ";1‘ Tp-}-!_ + ‘i" T:.t+u—1
= Tp-{-g + Tp+g+1 + + Tﬂ+2§'-—1
A&\i\Tan + Tuyoppr + - 0 Tugag—
D\ > .
we shall have‘,\
,..\I”\,' C=A,+ A+ A+ +
and at}he same time
4T, 4 T,

(2) Vi < 7 1, < 7, .
The ratio

Ay Dagg+ Dagpra+ = - 4+ Dhage

71- - ﬂHTh"f— T1+1+ R Th+g..1
19 less than the greafest of numbers

T}H—g Tl+g+1 e TJ\+2g—1

T T Priua
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But by inequality (1}

Tl+e Thigtt e Trgzg—1
N > P Tt > > WP
hence
Ay T,
VN
Similarly,

A.g TM-H} Aa < T,u+2g

-;1_; < Tu ' A? Tn-{—aJ O
and again by inequality (1) \\t‘"\
Tu+f.- T‘A+u T#+2r} TM—Hr e . ,‘:} N
T < T Tﬂ-\—ﬂ < T# ,'f': 3
Consequently \:\"f}\ ’
Ag T,_. A.S Tn )
P U P oA
and inequalities (2} are established. ‘
¢. Forxz z M o\ 7
Ww w.de%‘%k‘%" f.orgin
It suffices to show that Q '
ﬁ _m—Ap <1
ST T XT
As k= np A\
ANV n—-ap npq
A\ LA — < 1
\ A+1lg Tnpg+4g
which sh& that ;:” < 1
Thé“lnequallty just established shows that in the following expression:
\') .T_’.'E - T . Ty._, . Tp_.a+1 } Tp.-_a e gll]_
™ Tu—-l Tpuz Tp—a Tu—-an—-] TJ\

all the factors are <1. Consequently, if we retain a < g first factors
only, replacing the others by I, we get

g‘_’i < T, . Tus A _ij““‘i’l_

= Tr-t-«l T.un—2 g,#‘--ﬂﬂ
Moreover,

T# T.uu e Tﬁ-ﬂ+1

Tp“"' TJ“ 2 < < Tﬂ—.a
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whence the following important inequality results:

T n— u 4 «
3 il RO HETapy
®) Lo C Taten
Here « is an arbitrary positive integer <g.

Now, let ¢ be an arbitrary positive number. Then we can show thag
for

. Lall+d—g A
“ " elp + ¢ a o
we have both : \ \)

wh—ptap o
= =<
O et 1g S5+
Since p 2 np + ne, it suffices to show that (i) is satlsﬁed“f& b= np+ ne
If ¢ = np + ne inequality (i) is equivalent to

and (i) a < “gc"}’

ng—mneta q‘x;'\\“
np+ne—a+1=p‘+f\e

or, after obvious simplifications,

fie (Hrﬁkweg b %ld-rﬁf) org In

But this inequality follows from'{4). To establish (ii), since « and ¢
arc integers, it suffices to shofnthat o < g+ 1. But z 2 np + ne,
AM<np-+1and consequent{ly\g + 1 > ne. Hence (ii) will be estab-
lished if we ean show thab\he "2 « which by virtue of (4) will be true if

p .j”.’ a(l + ¢} — ¢ > o
P\ / p+e =
that is, if 22 M
' \j\‘ a(l + ¢) — g = ap + a¢
or ag - g 2, 0 which is obvmusly true, & being a positive integer.
d. Ths aumhary integer « is still at our disposal. Given an arbitrary
positlyciiumber n < 1 we shall determine a as the least integer satisfying
the inequality

1
w iOg;;
. D ) < > —
=9 or oz
(p+e log(l-i-%)

At the same time




100 INTRODUCTION TO MATHEMATICAL PROBAB ILITY [Cuap, V]

and sinece log (1 + %) > ——, we shall have

pte
pte 1
and
al+e —¢g _1+e 1,1
ép + ¢ < logn te
Consequently, if
N\
(5) ﬂ21+510g1+— N
E AN
then by virtue of (i) and (8) e .
T <, “: N\
) {
and by virtue of (2) o NS
Al(AﬂrAQ<Alﬂ<A7}2,A3<Aw’<An’ e
whence \\
6 ¢ < An + Ag® + Aﬁs‘““’" . i{]n'
dbra

This inequality hold? if' » sat 51 Iar}(ﬁ}‘ & D\TD trace of the auxiliary
integer o is left. :
e. Let us now consider Khe mequalltles

)
m

—e<%p<0 and ;n——p{—e

and introduce theg( y(mpectwe probabilities B and D, These 1nequalltles
are equivalent, &Q

‘\@'(n—m_g(é and n;m—gge.
-Itis apparent that we can interpret B or D as probabilities that the num-

baiﬁf occurrences m’ = n — m of the event F opposite to Ein n trlala will
J' 7

satisfy either the inoquality 0 < ; ~—qg<e or % — ¢ = e Since

the right-hand side of (5) contains only given numbers ¢, 5 it is clear that

By
1—

() D <

if (5) is satisfied.
Now A + B = P is the probability of the inequality
m

E""p|<é
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and ' + D = @ is the probability of the opposite inequality

m
Pl ‘P’ =
Hence £ + @ = 1. Moreover, by (6) and (7)

Q< iﬁ_
: -1
Consequently,
P

+ -—- > 1 ~
or ] \

P>1-9q R\
if only O

ngltelogl—!-l- \/“

This completes the proof of Bernoulli’s theorem.
For example, if p = ¢ = 24 and e = 0.0, 4 —\0.001 we get from (5)

n Z 69,869 \

which shows that in 69,869 trials or more thore are at least 999 chances
against 1 that the relatwe frequency will differ from 14 by less than 144.
The number 69,869 foundwa@wdl:ﬂﬁsnﬂmg Sfglhe number of trials is
much too large. A much smaller naniber of trlals would suffice to fulfill
all the requirements, From s. pra.ctlcal standpoint, it is important to
find as low a limit as possiblefor the necessary number of trials (given e
and ).  With this prob rrg wo shall deal in the next chapter.

2. Bernoulli’s theotem states that for arbitrarily given ¢ and » there
exists a number nqerm) such that for any single value n > no(e, #) the
probability of the {nequality

\\ m
° T
will be reéeter than 1 — 5. The question naturally arises, whether for
givepeaid 5 a number N (e, 4} depending upon ¢ and » ean be found such

< €

that tie probability of simultaneous inequalities

m

— —p <
npe

for all n > Ne, n) will still be greater than 1 — 7. The following theo-
rem due to Cantelli shows that this question can be answered positively.
- Cantelli’s Theorem. For given € <1, n <1 l& N be an inleger
satisfying the inequality
N >3 log e +2



102 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHap, VI“=

The probability that the relative frequencies of an event E will differ from -
p by less than € tn the Nth and all the following trials is greater than 1 — 4,
Proof. We shall prove first that the probability Q. of the incquality __

m
= plz
n P‘_E

will always be less than 2e%"’.  According to results proved in the -
preceding section for any ¢ > 0

Q. < 7q "
it N
14+e, 1, 1 L\
n > —5— log . + - 3N
This inequality, if we take 5 = 2¢~%** becomes (57'«:
n> e 1 —Jr € 1 ;{— € %\\

and in this form it is emdent, since for e < Lo\J

1-1jﬁ%2<yéﬁ%2<a

Ne/

Henee, as stated, R\
(8) www,@r.a‘%l@gﬁpgg?rg.in

The event A, in which W are interested, consists in simultaneous
fulfillment of all the inequalitics

'\s,.: @ _ ]
:\\ n P <
for n =N, N l.‘f\r + 2, . . The opposite cvent B consists in
the fulﬁllm{,ntx'of 4t least one of the inegualities
"\‘
.s‘\\w' Kt — }
":; ki Pl =e

Whm % can coincide either with N,orwith N 4+ 1, or with N + 2,
m ‘probability of B, which we shall denote by R, certainly dﬂes not
exceed the sum of the probabilities of all the incqualities

m_l’lée

forn=N,N4+1, N+2 .....
Consequently, referring to (R),

T Zeive

1 — et

I

E < 22 gine
=N
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To satisfy the inequality

e—tna
T=¢w <7
it suffices to take
1
Now
10 1 .2, 2.
L 1— et ~ g Og + Q"
Consgequently, if O\
'\
N>—log -2 S\

we shall have B < v and at the same time the probabxl" ty of 4 will be
greater than 1 — 4, which proves Cantelli’s theorend
Ko
Sten1FIcaNcE oF BErNOULMS THEOREM

3. As was indicated in the Introduet:c;n' one of the most important.
problems in the theory of probability‘ebnisists in the discovery of cases
where the probahility is veﬁ?‘ﬁ‘éﬁ%ﬁ"b’?l BEvtbugesntrary, very near to I,
because cases with very smal} or. irery “great” probability may have real
practical interest. In Bernoulli’s theorem we have a case of this kind;
the theorcm shows that with the probability approaching as near to 1
or certainty as we pléafe,“we may expect that in a sufficiently long
series of independent™Mrials with constant probability, the relative fre-
quency of an evend’will differ from that probability by less than any
specified numberpmo matter how small.  But it lies in the nature of the
idea of mathem@tical probability, that when it is near 1, or, on the con-
trary, ve nall, we may consider an event with such probability as
practicall}c certain in the first case, and almost imposasible in the second.
The. reéson is purely empirical,

\Ie illustrate what we mean, Ieb us consider an indefinite series of
independent trials, in which the probability of a certain event remains
constantly equal to 14. It can be shown that if the number of trials
i, for instance, 40,000 or more, we may expect with a probability > 0.999
that the relative frequency of the event will differ from 24 b]fr less than
0.01. 1In other words, we are entitled to bet at least 999 against 1 that
the actual number of occurrences will lie between the limits 0.49» and
0.51n if » = 40,000. If we could make a positive statement of this
kind without any mention of probability, we should be offering an ideal
scientific prediction. However, our knowledge in this case is incomplete
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and all we are entitled to state is this: we are more sure to be right ip
predicting the above limits for the number of occurrences than in expeet.
ing to draw a white ball from an urn containing 999 white and only 1 -
black ball.

In practical matters, where our actions almest never can be directed
with perfect confidenee, even incomplete knowledge may be taken as g
sure guide. Whoever has tried to win on a single ticket out of 10,000
knows from experience that it is virtually impossible. Now the convie
tion of impossibility would be still greater if one tried to win on a single
ticket out of 1,000,000. .

In the light of such examples, we understand what value\may be
attached to statements derived from Bernoulli’s theorem: Aliﬁ'oﬁgh the
fact we expect is not bound to happen, the probability ofiits” happening
is so great that it may really be considered as certain,{Ohce in a great
while facts may happen contrary to our expectations, Hnt such rare cxeep-
ttons cannot outweigh the advantages in everydaglifc of following the
indications of Bernoulli’s theorem. And hereinJies its immensc practical
value and the justification of a science like {ie\theory of probability.

It should, however, be borne in mind\that little, if any, value can be
attached to pracfieal applications of, Bérnoulli's theorem, unless the
conditions presupposed in this theoremt are at least approximately ful-
filled: independence of tﬁm-%ﬂ&%@f&’n‘?}r%i}&bability of an event for
every trial. And in questions“ef application it is not easy to be sure
whether one is entitled to mak&use of Bernoulli’s thoorem; consequently,
it is too often used illcgititately.

It is easy to underﬁa\nd how essential it iz to discover propositions
of the same charagter»>under more general conditions, paying especial
attention to the pessible dependence of trials. There have been valuable
achicvements Pehis direction. In the proper place, we shall discuss the
more important generalizations of Bernoulli’s theorern.

4. Whenthe probability of an event in a single experiment is known,
BernQLQIi’é theoremn may serve as a guide to indicate approximately how
ofpen this event can be expécted to occur if the same cxperiments are
repedicd a considerable number of times under nearly the same condi-
tions. When, on the contrary, the probability of an event is unknown
and the number of experiments is very large, the relative frequency of
that event may be faken as an approximate value of its probability.
Bernoulli himself, in establishing his theorem, had in mind the approxi-
mate evaluation of unknown probabilities from repeated experiments.
That is evident from his explanations preceding the statcment of the
theorem itself and its proof. Inasmuch as these explanations are interest-
ing in themselves, and present the original thoughts of the great discov-
erver, we deem it advisable here to give a free translation from Bernoulli’s
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book. .{&f.ter calling attention to the fact that only in a few cases can
probabilitics be found a priori, Bernoulii proceeds as follows:

8o, for example, the number of cases for dice is known. Evidently there are
a8 mAany casca for .ea(:h die as there are faces, and all these cases have an equal
chance to materiglize. Tor, by virtue of the similitude of faces and the uniform
distribution of weight in a die, there is no reason why one face should show up
more readily than ancther, as there would be if the faces had a different shape
or if one part of a die were made of heavier material than another. 8o one knows
the number of cases when a white or a black tieket ean be drawn frem an urn,
and besides, it is known that all these cases are equally possible, because thewun-
hers of tickets of both kindy are determined and known, and there is no gpparcnt
reason why one of these tickets could be drawn more readily thap-gwy-other.
13ut, I asgk you, who among mortals will ever be able to define as so many eases,
the number, e.g., of the digeases which invade innumerable pguté"bf the human
body at any age and can cause our death? And who can gay How much more
easily one diseasc than another—plague than dropsy, degpsy than fever— can
kill & man, to enable us to make conjectures about the\titure state of life or
death? Who, again, can register the innumerable qaﬁ‘ss’of changes to which the
air j= subject daily, to derive therefrom conjecturés‘as to what will be its state
after & month or even after a year?  Again, whio has sufficient knowledge of the
nature of the human mind or of the admirable.gtructure of our body to be able,
in games depending on acuteness of mind,{::f~s.gility of body, to enumerate cases
in which one or another of thévpirdliptbrwily winlin Since such and similar
things depend upon completely hiddes causes, which, besides, by reason of the
innumerable varicky of combinations will forever escape our efforts to detect
them, it would plainly be an infatte attempt to get any knowledge in this fashion.

However, thero is anotK'C‘WQy to obtain what we want. And what is impossi-
be to get a prioti, ab least ean be found a posteriori; that is, by registering the
results of ohservatiops petformed a great many times. Because it must be pre-
sumed that somethingmay oecur or not oceur as many times as it had previously
been abserved t6Jodtur or not oceur under similar conditions. For instance, if,
in the past,"300)men of the same age and physical build as Titus is now, were
{nvestigated Nnd it were found that 200 of them had died within a decade, the
others cxjrft-i.uuing to enjoy Iife past this term, one could pretty safely co:!zclude
thatthare are twice as many cases for Titus to pay his debt to nature within the
nd%t decade than to survive beyond this term. So it is, if somebody for many
precoding years had observed the weather and noticed how many times it was
fair or Tainy; or if somebody sttended games played by two persons a great many
times and notiecd how often cne or the ofher won; by these very observations he
would be able to discover the ratio of cases which in the future might faver the
oceurrence or failure of the same cvent under similar circumstances, )

And this empirical way of determining the number of cases by‘expe_rl’r,nents 18
neither new nor unusual. For the author of the book “Ars cf)glbtandl. & man
of great acumen and ingenuity, in Chap. 12 recommends a similar procedure,
and everybody does the same in daily practice. Moreover, it cannot be con-
cealed that for reasoning in this fashion about some event, it is not sufficient to
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make a few experiments, but a great quantity of experiments is required; beeauge
even the most stupid ones by some natural instinct and without any previogs
instruction (which is rather rematkable) know that the more experiments are -
made, the less is the danger to miss the scope.

Although this is naturally known to anyone, the proof hased on selentifi
principles is by ne means trivial, and it is our duty now to explain it, However,
I would consider it a small achievernenst if I could only prove what everybody
knows anyway. There remains something else to be considercd, which perhaps
nobody has even thought of. Namely, it remains to inguire, whether by thys
augmenting the number of experiments the probability of getting & genuingvratio .
between numbers of cases, in. which some event may oceur or fail, also adghments
itsell in such a manner as finally to surpass any given degree of géufitude; or
whether the problemn, so to speak, has its own asymptote; that is{thire exists a
degree of certitude which never ean be surpassed no matter hoy blie observations
arc multiplied; for instance, that it never is possible to have mprobability greater
than 14, 24, or 34 that the real ratio has been attained.  ToWlustrate this by an
example, supposc that, without your knowledge, 3,0000white stones and 2,000
black stones are concealed in & certain urn, and you tryyto discover their numbers
by drawing one stonc after another (each time gubting back the stone drawn
before taking the next one, in order not to chaﬁ& the number of stones in the
urn) and notice how often a white or a blacK wtone appears. The guestion is,
can you make g0 many drawings as to make it 10, or 100, or 1,000, etc., times
more probable (that is, mora]ly, cenfpin et ¢ eolgtin of frequencies of white and
black stones will be 3 to 2, as is the.gase with the number of stones in the urm,
than any other ratio different from that? If this were not true, I econfess nothing
would be left of our attempt $ovéxplore the number of cases by experiments.
But if this can be attained andmoral certitude can finally be acquired (how that
Can be done I sha,]l ShOW lh\}he next chapter), we Sha,]l ha,ve casSes ony ]'nera.‘t.ed a
posteriori with almost thésame confidence as if they were known a priori. And
that, for practical putposes, where “morally cortain” is taken for “‘absolutely
certain” by Axiom 8¢ Chap. II, is abundantly sufficient to direct our conjectures.
In any contingent‘matter not less seicntifically than in games of chance.

For if inﬁ%ﬁﬂ of an urn we take the air or the human body, that contain in
themselveg\gburees of various changes or diseases ag the urn contains stones, we
ghall 'bga'éblc In the same manner to determine by observations how much more
likely ite event is to happen than another in these subjects,

T6 avoid misunderstanding, one must bear in mind that the ratio of cases
which we want to determine by experiments should not be taken in the sense of &
precise and indivigible ratio {(for then Just the contrary would happen, and the
probability of attaining & true ratio would diminish with the inereasing number of
observations) but as sn approximate one: that ig, within two limits, which,
however, can be taken as near as we wish o each other. Tor ingtance, if, in the
case of the stones, we take pairs of ratios 301400 and 2994, or 3061544, and
#9998 00, efe., it can be shown that it will be more probable than any degrec of
probability that the ratic found in experimenty will fall within these limits than
outside of them. Such, therefore, is the problem which we have decided to
publish here, now that we have struggled with it for about twenty years. The
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novelty of this prok.)lem as well as its great utility, combined with equal difficuity,
may add to the weight and value of other parts of this doctrine.—* Ars Conjee-
tandi,” pars quarta, Cap. IV, pp. 224-227.

"APPLICATION TO GaMEs oF CHANCE

5. One of the cases in which the conditions for application of Ber-
noullt’s theorem are fulfilled is that of games of chance. It is not out
of place to discuss the question of the commercial values of games from
the standpoint of Bernoulli’s theorem. “Game of chance” is the term
we apply to any enterprise which may give us profit or may causé™us
losg, depending on chance, the probabilities of gain or loss being known.
The following considerations can be applied, therefore, to more sérious
guestions and not oply to games played for pastime or for the sake of
gaining money, ag in gambling. .

Suppose that, by the conditions of the game, a glayer can win a
certain sum ¢ of money, with the probability p; .ﬁ’r}\can lose another
surn, b with the probability ¢ = 1 — p.

If this game can be repeated any numbql;"czf*'iimes under the same
conditions, the question ariscs as to the probability for a player to gain
ar lose a sum of money not below a giyen limit. Let us denote by =
the total number of garaes, and by m\the number of fimes the player

wing. Considering a loss awfﬂ%@g&lﬁﬁi&ﬂﬁ- gt%&l gain will be

K = ma*— {n — m)b.
1t is convenient to introdude instead of m another number « defined by
) .
7 amm—np

and ealled “discrepaey.” Txpressed in terms of « the preceding expres-
slon {or the gai{ Becomes .
“\ K = nipa — gb) + (a + b)a.
The expr.?'s\hion
AN E = pa— gb

eﬁ&et.l\’iflg as the coefficient of n has, as we shall see, an importan$ bearing
on the conclusion as to the commereial value of the game. Tt is ealled th'e
“mathematical expectation” of the player. Suppose ab ﬁrst. -tha.t this
expectation is posiive. By Bernoulli’s theorem the ;';rf)bablhty for a
diserepancy less than —me, e being an arbitrary positive number, is
smaller than any given number, provided, of course, the _11:.1mber of games
is sufficiently large. At the same time, with the probability approaching
1 as near as we please, we ay expect the discrepancy to be £ — ne
However, if this is the case, the total gain will surpass the number

B ~ e(a + b))
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which, for sufficiently large =, itsclf is greater than any specified positive -
number. It is supposed, of course, that e is small enough to make the
difference

E—elatB)

positive. And that means that the player whose mathematical expecta-
tion is positive may expect with a probability approaching certainty as
near a8 we please to gain an arbitrarily large amount of moeney if nothing
prevents him from playing a sufficient number of games. )

On the contrary, by a similar argument, we can sec that in easeh of
a negative mathematical expectation, the player has an arbit-ra‘-ti}y‘ smail
probability to escape a loss of an arbitrarily large amount-of mouey,
again under the eondition that he plays a sufficiently large fiumber of
games, \ )

Finally, if the mathematieal expectation is 0, it iz fipossible to make
any definite statement concerning the gain or loss \iy'the player, except
that it is very unlikely that the amount of gain gnloss will be considerable
compared with the number of games. fO

It follows from this discussion that ﬁhe:game is certainly favorable
for the player if his mathematical expectation is positive, and unfavorable
if it is negafive. In casc the matheniatical expectation is 0, neither
of the parties participatin‘g‘iﬂ’tﬁhfﬁ'ﬁm'ﬁ%‘%y&égidcd advantage and then
the game is callod cquitable. ‘Usda'.lly, games Serving 48 amusements are
equitable. On the contraryfall of the games operated for commercial
purposes by individuals or{corporations are expressly made to be profita-
ble for the administratibny that is, the mathematical expectation of the
administration of a game operated for lucrative purposes is positive at
each single turn ofstheé game and, correspondingly, the expectation of any
gambler is negatiye. This confirms the common observation fhat those
gamblers “*{é):te’xtend their gambling over large numbers of games are
almost ingyiably ruined. At the same time, the theory agrees with
the fafcggftha-t great profits are dertved by the administrations of gaming
places.”

¥ good illustration is afforded by the French lottery mentioned on
page 19, which, as is well known, was a very profitable entevprise operated
by the French government. Now, if we consider the ruathematical
expectation of ticket holders in that lotiery, we find that it was negative
in all cases; namely, denoting by M the sum paid for tickets, we find the
following expectations:

- On 1ticket (1§ — DM = — 1M,
On 2 tickets  (§3) — DM = —1 M,

BAL

On 3 tickets (F%%% — DM = — L1883,

and so forth,



Bec. 6] BERNOULLF'S THEOREM 109

On the other hand, the expectation of the administration was always
positive, and because of the great number of persons taking part in this
lottery, the number of games played by the administration was enoTInous,
and it was assured of a steady and considerable income. This was an
enterprise avowedly operated for the purpose of gambling, but the same
principles underlie the operations of institutions having great publie
value, such as insuranee companies, which, to secure their inecome, always
reserve certain advantages for themselves.

EXPERIMENTAL VERIFICATION OF BeRNoULLU’s THEOREM N\

6. Bernoulli’s theorem, like any other mathematical proposition, is
a deduction from ideal premises. To what extent these premiSesinay be
considered as a good approximation to reality can be decided only by
experiments. Several experiments established for the plrpese of testing
various theoretieal statements derived from general{propositions of the
theory of probability, are reported by different authors. Here we shall
discuss those purporting to test Bernoulli’s theoteni,

I. Buffon, the French naturalist of the eighteenth century, tossed a
coin 4,040 {imes and obtained 2,048 heads\and 1,992 tails. Assuming
that hig coin was ideal, we have a probability of 14 for either heads or
tails. Now, the relative frequencieg’obtained by his experiments are:

P AR S A
3344 40493 for tails

and they differ very Htt{e:ﬁrom the corresponding probabilities, 0.500.
In this ease, the conclafiors one might derive from Bernoulli’s theorem
are verified in a very'gatisfactory manner.

II. De Morgagp il his book ““Budget of Paradoxes” (18732}, I"eports
the results of i\\:»m' gimilar experiments. In each of them a coin was
tossed 2,048tifges and the observed frequencies of heads were, respec-
tively, 1,Q@'1;048, 1,017, 1,039. The relative frequencies corresponding

to theselimbers are
B 0518; 4043 = 0512; 381} = 0497; 338§ = 0.507.
The agreement with the theory again is satisfactory.

III. Charlier, in his book ¢ Grundziige der mathematischen Statistik,”
reports the results of 10,000 drawings of one playing card out of a full
deck. Each card drawn was returned to the deck before the next draw-
ing. The actual result of these experiments was that black ecards
appeared 4,933 times, and consequently the frequency of red cards was
5,067. 'The relative frequencies in this instance are:

F&88 = 0.4933 for a black eard
%%y = 0.5067 for a red (':ﬁrd
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and they differ but slightly from the probability, 0.5000, that the card
drawn will be black or white. The agreement between theory and experi-
ment in this case, too, is satisfactory.

IV. The author of this book made the following experiment with -
playing cards: After excluding the 12 face eards from the pack, 4 cards
were drawn at a time from the remaining 40, and the number of trials
was carried o 7,000. ‘The number of times in each thousand that the
four cards belonged to different suits, was:

I I mI IV V VI VI \
113 113 103 105 105 118 108 O\
Altogether the frequency of such cases was 765 in 7,000 ’tri.fﬂs, whence
we find for the relative frequency N
Jbs = 0.1093 v
while the probability for taking 4 cards be]ongi{g to different suits iz
AN

28 = 0.1094, ¢ ¢

V. In J. L. Coolidge’s “Introduction{ t¢” Mathematical Probability,”
one finds a reference to an experimgm”made by Lieutenaut R. 8. Hoar,
U.8.A., but the reported results %%%%%?—?@l%l%m The author of this hook
repeated the same cxperiment whieh consisted 1n 1,000 drawings of 5 cards
at a time, from a full pack of*52 cards. The results were: 503 times the
5 cards were each of diff ergn}denommations ; 436 times 2 were of the same
denomination with 3 séattéred ; 45 times there were 2 pairs of 2 different
denominations and 1,6dd eard; 14 times 8 were of the same denomination
with 2 seattereds @ times there were 2 of one denomination and 3 of
another. The Jemaining possible combination, 4 cards of the same
denominatiom\with 1 odd, never appeared. The probabilities of these
diﬂerentga%eé are, respectively,

AN EHE = 0.507; 1§80 = 0.423; 294 — 0.048;
CNY gy = 00215 gy = 0.001; ke = 0.000.

The corresponding theoretical frequencies are 507, 423, 48, 21, 1, 0,
while the observed frequencies were 503, 436, 45, 14, 2, 0. The dis-
crepancics are generally small and the greatest of them, 13, is still within
reasonable limits. Decper investigation shows that the probability that
a diserepancy will not exceed 13 is about 14; hence, the observed deviation
of 13 units cannot be considered abnormal.

VL. Bancroft H. Brown published, in the American Mathematical
Monthly, vol. 26, page 351, the results of a series of 9,900 games of craps.
fI‘his game is played with two dice, and the caster wins uneonditionally
if he produces 7 or 11 points, which are called “naturals’’; he loses the
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game in case of 2, 3, or 12 points, called “craps.” But if he produces
4,5,6,8, 9, 0r10 “pomts "’ he does not win, but has the right to cast the
dice an unhnmted number of times until he throws the same number of
points that he had before, or until he throws a 7. If he throws 7 before
obtaining his point, he loses the game; otherwise he wins.

It 13 a good exercise to find the probability of winning this game.
It is

344 = 0.493

that is, a little less than 14, Multiplying the number of games, i eur
cagse 9,900, by this probability, we find that the theoretical number of
successes 1s 4,880 and of failurces, 5,620. Now, according to Baneroft H.
Brown, the actual numbers of suceesses and losses are,, respectweiy,
4,871 and 5,029. The discrepancy N

4871 - 4880 = -9 (U

is extremely small, even smaller than could rehgohably be expected.
The same article gives the number of times {“craps” were produced;
namely, 2 appeared 259 times, 3 appeared. 5(}8 times, and 12 appeared
203 times, making the total number of craps 1,060. The probability
of obtaining craps is ,,

Wf&‘“”dté‘%a&!h%ﬂﬁ' drg.in

hence, the theoretical number; ﬂf craps should be 1,100. The diserepancy,
1060 — 1100 = —40, is moi"e considerable this tlme but still lies within
reazonable limits. w

VII. E. Czuber m& a complete investigation of lotteries operated
on the same plan as ‘the French lottery, in Prague between 1754 and 1886,
and in Briinn t\tween 1771 and 1886. The number of drawings was
2 854 in Pragucfand 2,703 in Briinn. The probab:hty that in each draw-
ing the se(\:@eﬁce of numbers is either increasing or decreasing, is

'\.f;’o o = 0.01667

Whﬂé‘s the observed relative frequency of such cases was

Prague: 0.01612; Brinn: 0.01739
and in both places combined
0.01674.

The probabilities that among five numbers in each drawing there is
none or only one of the numbers 1, 2,3, . . . 9, are, respectively,

0.58298 and (.34070.
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The corresponding relative frequencies were

Prague: 0.58655 and 0.32656
Briinn: 0.57899 and 0.34591

and in both places combined
(0.58183 and 0.33587, respectively.

The probability of drawing a determined number is 2{g.  Now, acefrding
to Czuber, for the lottery in Prague the actual number of occuryenees for
single tickets varied from 138 (for No. 6) to 189 (for No. 83)(@0)]1&’5 for
all tickets the discrepancy varied from —20 o 31.  Besidés/ there wero
only 16 numbers with a discrepancy greater than 15 i absolute value.
All these results stand in good accord with the theogy )

VIIT, One of the most striking experimentil Yests of Bernoulli's
theorem was made in connection with a probl@ considered for the first
time by Buffon. A board is ruled with a géries of equidistant parallel
lines, and a very fine needls, which is shortér than the distance between
tines, is thrown at random on the boafd)” Denoting by I the length of
the needle and by & the diwtadrbdfiiesy BigdD the probability that the
needle will intersect one of the lines (the other possibility is that the
needle will be completely contaiitéd within the strip between two lines) is
found to be e

O
S

The remarkable’ thing about this expression is that it econtains the
number = ="§:1~4159 " - - expressing the ratio of the circumference of a
circle to ip\ﬂiameter. In the@*}‘peﬂdix we ghall indicate how this expres-
sion r:aynflk obtained, because in this problem we deal with a different
concepd, of probability. '

““Buppose we throw the needle a great many timecs and count the
%mber of times it cuts the lines. By Bernounlli’s theorem we may expect
that the relative frequency of intersections will not differ greatly from
the theoretical probability, so that, equating them, we have the means of
finding an approximate value of . : '

One scries of exporiments of this kind was performed by R. Wolf,
astronomer in Zurich, between 1849 and 1853. In his experiments the
width of the strips was 45 mm., and the length of the needle was 86 mmn.
Thus the theoretical probability of intersections is

72
1B~ 0.5093.
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The needle was thrown 5,000 times and it cut the lines 2,532 times;
whence, the relative frequency

1383 = 0.5004.

The agreement between the two numbers is very satisfactory. If,
relying on Bernoulli’s theorem, we set the approximate equation

% = 0,5064,
T ~\

we should find the number 3.1596 for », which differs from the ktiown
valne of « by less than 0.02, R\,

In another experiment of the same kind reported by DelMorgan in
the aforementioned book, Ambrose Smith in 1855 made 3;20¢" trials with
a needle the length of which was 94 of the distance betwéén'Tines. There
were 1,213 clear intersections, and 11 contacts on whg'.}h it was difficult
to decide.  If on this ground, we should considerhalf of them as inter-
seetions, we should obtain about 1,218 interseg:ti&is in 3,204 trials, which
would give the number 3.155 forar.  If all of ghe contacts bad been treated
as intersections the result would have héelt’ 3.1412—very close to the
real value of x. www.dbraulib['afy.sl'g.in

In an excellent book “Calcolo déllée Probabilita,” vol. 1, page 183,
1925, by 3. Castelnuove, referen’ce”j‘s' made to experiments performed by
Professor Reina under whose, direction a necdle of 3 em. in length was
thrown 2,520 times, the distdnee between lines being 6 em. Taking into
account the thickness oKi\ﬁe’ needle, the probability of interscction was
found to be 0.345, while actual experiments gave the relative frequency
of intersections as 9.\341.

Y ArprNpIX

Buffon’s Wesddle Problem. Let % befe width of the strip between
two lines afdM < h the length of the needle. The position of the needle
can be d@:términed by the distance z of its middle point from the nearest
linesand/ the acute angle ¢ formed by the needle and a perpendicular
dl'ﬂbpe‘d from the middle point to the line. It is apparent that  may
vary from 0 to £/2 and ¢ varies within the limits 0 and #/2. We cannot
define in the usual way the probability of the needie cutting the line, for
there arc infinitely many cases with respect to the position of the needle.
However, it is possible to treat this problem as the limiting case of
another problem with a finite number of possible cases, where the usual
definition of probability can be applied.

Suppose that h/2 is divided into an arbitrary number m of equal
parts § = h/2m and the right angle »/2 into » equal parts w = =/2n.
Suppose, further, that the distance £ may have only the values

0,824, ... md
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and the angle ¢ the values

G w, 26, . . . B0,
This gives
=(m+1)n+1)

cases as to the position of the needle, and it is reasonable to assume that
these cascs are equally likely. To find the number of favorable cases, we
notice that the needle cuts one of the lines if z and ¢ satisfy the inequality

i O\
x < = (08 A\
2 @- O

Nws

The number of favorable cases therefore, is equal to, the‘ number of

gystems of integers <, § satisfying the inequality \\
ol
{4) 6 < 5 008 jo RN
supposing that £ may assume only the values\ﬂ 1,2, ... mandjonly
the values 0, 1, 2, . . . ». DBecause WQ »SUppOse I< h the greatest

value of 7 satisfying condmrﬂlﬁwyha!{‘lﬁ ‘RR&A m and we can disregard
the requirement that 7 should be <#s Now for given j there are k& + 1

values of ¢ satisfying (A) if & deﬁott,s the greatest integer which is less
than

A4

{"»\
.\\w o5 ¢os Jo.
In other words, & is\~af;1'integer determined by the conditions
\‘\ k <§% cosjw = b+ L.
N Tl

The numBer of possible values for ¢ corresponding to a given j ecan
theref&{e be represented thus

\‘

hy = ;5 cos fuw 4 &

where #; may depend on j but for all Jjis =0 and <1.
of all the m; corresponding to j = 0, 1, 2,
of favorable cases

Taking the sum
. 7, we obtain the number

1 )
M=§-a-(1+cosw+cos2w+ * ot 4 cos nw) - 10

where © again is 8 number satisfying the inequalities

t=se<l.
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But, as is well known,

1 4 cos @ + cos 20 + ...+cosnw=%+sin(n+%)w

W
2 &in 5
or, because o = %
1,1 o O
14 cosw-t cos2w+ - - - —I—cosm~§+§mt§;}t\\
NN
therefore \J
l N
M= + + o, N
¢ ¢
o\
Dividing this by N = (m -+ 1)(n + 1) and substitiifing for & and o
their expressions N
5= o —‘i\v
T “ 2

www.dbr auhbraxy car{g1
we obtain the probability in the probk‘m with a finite number of cases

Y
’v

Mol om g m 1 70
+

N~ 2 m+1n—l—lj\2h m+l e+l t+tDm+1D

The probability in, B\Eon ’g problem will be obtained by making m
and »n increase mdeﬁ{n};e’ly in the sebove expression. Now, since

L >
Ve \ud

& lim —2 . = 1,
\i“, 1111 T 1 =
R
i =0 (m, n— )

{%—I- NG TD " G I DETD
and\

ot -
limc——‘ln—§
A+l =

we have
M 2

lim -'}v = E
Thus we arrive at the expression of probability
_ 2
P=
in Buffon’s needle problem.
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Problems for Solution

Another very simple proof of Bernoulli’s theorern, due to Tshebyshefl (1821-
1884), is hased upon the following considerations:
1. Prove the following identities:

2 Tolm —np) =0, 2 Talm — np)? = npq,
m={

m=0

Indication of the Proof. Differentiate the identity N\

A
i AN
gmper + g)r = 2 Tpelmorre NS ©
\o/
\

m=0
{wice with respect to w and set » = 0. X \
2. Tf Q is the probability of the inoquality |m — np| 2 neprove that

Pq
< =, \
g o
Q..x\"

A\ Y

Indication of the Proaf. In the identity
" N/
2 Trim — np)® = npg
wd Ubraylibrary org.in
drop all the terms in which |m — anf{;né and in the remaining terms replace
AN A{m — mp)?
by nisf,  The resulting inequ\aﬁ}}

O ETM.(E
» Ml nel

¢ ‘1\ / ln—nplEne

is equivalent to {ie Statenent.

3. Prove t}{@f’

) \'\ P>1- 7

if > pg/lpd,

Igi'd@hatwjan of the Proof. P =1—10,Q < pg/ne® snd pg/ned < 11 1 > pg/ned

"Ll following two problems ghow how probability considerations ean be used in

proving purely analyticel propositions.

4, 8. Bernstein's Proof of Welersirass' Theorem. The famous theorem due to Weler-

Stl:S.SS states that for any continuous functien f{z) in & closed interval ¢ = 2 < b there .
exiats 8 polynornial P(z) such that T

Wiz) ~ P <o
for o £ & < b where 7 is an arbitrary positive number. By a proper linear trans-

formation the interval {g, b) can be transformed into the i i
; ; interval (0, 13.
10 8. Bernstein, the polynomial el 0, 1), According

P(z) = 20%*’*(1 — x)mw\!(::n)

=0
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for sufficiently large n satisfies the inequality

if{x) — Plz}] <o

uniformly in the interval ¢ = 2 = 1, .
Indication of the Proof. For z = 0and & = 1 we have f{0) = P(0) and

S = P,

It suffices to prove the statement for 0 < @ < 1, Let z be a constant probability in
7 independent trisls.  We have

o
i
2 - m LS,y
(a) Jlx}) — P{z) = Cozm(l — g)v ’”[f(x) —f(;)]- N\
=0 % \/
£
By the property of continuous functions, there is a number « oonms}soﬁdmg to any
positive number ¢ such that "\\ &
[ \"
o) =@l <3 N

D
4

whenever
o' -zl <e (0 =zhaE ).

Also, there exists & number M such that |j('rl]»,§ M for 0 = 2 £ 1. From equation
{a) we get W dblaullbr,ai‘y org.in

[f(z) — {’{:Z:)F = §P + 2MR
O
where P and B are, respeetively, t);e probabilities of the inequalities

T{lsx <€ and 2o Z e
7y 1
Now P < 1 and “I\’)
’\5'
"\‘ R <9
ifn> 1/-137; &ake n = a/4M; then
Ay fz) - P(z)] <o

it «(}“’
ezcr-
6. Show that

e
fﬂ (1 — x)"mdx
m_ 1

kil

>l ——
j;lxm“ _ ayeds 2(n + 1)e?

provided 0 < m < nand n_ e >0, ;m— + e < 1 {Castchhuove).
#
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Indication of the Proof. By Prob, 6, Chap. IV, page 72, the ratio

f v pnl — gymda
u —  —r——

1
J; g (1 — )y dz

represents the probability € of at least m + 1 successes in & sertes of # <4 1 inde-
pendent trials with constant probability

B N\
P = n £ AL
Qet R \J)
m+1=fﬂ+1‘j]}+(ﬂ+1)o‘ '1\"}
whenee '\\}‘
n—m P2\
Tamrn 70 (A
+NO)
But \ 4

P —p) RN
i Tt g
Henceo NS,
m_

# it l — w=1t, ’."."
J; \-.r\::ng.dbraé{;lu;%iy,org.m

floma - aghas 40+ DS

and by a similar argument \\
¢(\J
1
f Mam(l — z)rmdy
m
Pl <X .
O >’}.rlxm(1 — ynmdy 4(n + 1)t
oy Jo
A&

\ %
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CHAPTER VII

APPROXIMATE EVALUATION OF PROBARBILITIES IN
BERNOULLIAN CASE - ~

1. In connection with Bernoulli’s theorem, the following important
question arises: when the number of trials is large, how can one ﬁm{‘ at

least approximately, the probability of the inequality O
E?j —p = ¢ . ( R
n -

where ¢ is a given number? Or, in a more generalform: How can one
find, approximately, the probability of the mequa@;n,s

l<smzV ..\
where 7 and 1 are given integers, the numbér cif trials » being large?

The exact formula for thls probabﬂity‘ i
w.dbr aullh;aty org. in

P = %T

where 7', as before, represent”c;,\the probability of s successes in # trials,
While this formula camo\be of any practical use when » and ¥ — 1
are large numbers, yet_ It IS precisely such c¢ases that present the greatest
theoreiical and prar{ut&al mterest. Hence, the problem naturally sarises
of substituting forythe exact expression of ¥ an approximate formula
which will be egfy fo use in practice and which, for large », will give a
sufficiently close approximation to P. De Mowre was the first suc-
cessfully te. &ttack this difficult problem. After him, in essentially the
same Way,\‘nut using more powerful analytical tools, Laplace succeeded
in eqta}shshmg a simple approximste formula which is given in all books
on probability.

When we use an approximate formula instead of an exact one, there
is alw ays this question to consider: How large is the committed error?
If, as iz usually done, this question is left unanswered, the derivation of
Laplace’s formula beeomes an easy matter. However, to. estimate the
error comparatively long and detailed investigation is required. Except
for its length, this investigation is not very difficult.

2. First we shall present the probability 7', in a convenient analytical

form. The identity

F@) = @t +gr = To+ T+ Tot* + - - - + T
119
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after substituting § = e beecomes
Fle#) = To + Tae'e - Toe®™ + - - - + T e,
Multiplying it by e~ and integrating between —=r and =, we get
fj e-iwF(gyde = 22T,

because for an integral exponent &

. ) if B0 N
f_fk o =9r i k=0 R
¢\
Thus N\
T. 211r ' F(e“’)e"md‘p £ s

and this is the expression for T, suitable for our pyfpbses. To find the

Elim \
s=I" "\\ 4

PET \ Qg

Y N/

we observe first that o ‘
www.dhrau{ﬂg’farynrg.m

&N . -1 +1
g={ g_i£¢’ i e"'ﬁ{i"}'l‘f@:; -—I.__s__..g." gin (T 7]

E:g“siﬁﬂ‘ = — = ¢ 2 W

€%, -
g=1 7\ }\ . §
\\
On the other handy the complex number F(e*) can be presented in
trigonometrical forf; thus:
R d F(e*) = Ree
whence \*3

\M. (o-112) sin ( - ; + 1)
/" X g ' - R
Q f d

@
gin =
2

¢

or, because P is real,

1" sm( _I+1)
P =-2;J‘-TR cos (8 )

de.

Finally, because R is an even function of ¢ and © is an odd one, we can
extend the infegration over the interval 0, r on the condition ¢hat we
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double the result. Thus we chtain
. V—14+1
_if b4\ (ﬁ—)q’
P = FJ; R cos (6 — (,o) de.

2
sin"—zo'

It is convenient to introduce instead of ! and ¥ $wo numbers §: and ¢
defined by

l=np+3+6vVB, U=mp—3i+oVE

where B, = npg. Setting further o\
« N/
9 - R?J(P + X; “.(N:‘;
P can be presented as m'\"\."
P=P,—-P NS,
where P; and P; are obtained by taking ¢ = {1 ands 3\— {2 in the integral
(1) J = i f B sin (f\f BMD _"X)d
2% sin gqa W

WWW dbrauhbnar ot
3. Our next aim is to establish llpq)gr agncl1 lower limits for E.

Evidently N

A AN
= (p*+ ¢* 1 2pg ggs}\p}z = (1 — 4pg sin® 5)2 = p"
A\

Now p
\.J

1 %, .. 1 . P
log » = 5 log (1 - :%Qg,%i'nﬂ g) = —2pgsin®5 — 7(4pg)® sin' g —
7\
\/ . 1 . @
) AN —glipg?sin®g — - -

whenee 0%

N/

\/ log p < —2pg sin’ g

Since 144 < r/2, we have

>._
sz

and consequently
2
log 2 - fgq‘l‘,E

or
s
@) y <o B
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for all values of o in the interval of integration. Omn the other hand, we

have
. P
sin =
2
and
1
sinzg >Z — ==

which gives another upper bound for i

(3)

The correspending upper bounds for E will be

{4)
()

=

ot < 24

To find a lower bound for B we bhﬂH \assume ¢ =< w/2 We can

present log p thus:

log p = —%*q (4}'3(}3'g sm“ ’*?

On the other hand, \ A

N

%(410‘1)3 sins ¥ +%§Iﬁgy)" sin® =

\u,
and {\
< \
W
goMhat

2P (3) sin* “"} ~ §ltpa) sins £ —

- §(4P9)3 sin“i; =

and consequently

pq ,
log p > ~T5o? ~ -(4?39)“8111‘* £> ?;g P

»

hsinzf>_%s'm4f

— sinQ—g} -
1 3ot ¥
gldpg)® sin® 5

(4pq)3 sinf 2
- < E___H__Q < 1(4pq)“bm“(p
1—4pq smﬁg

2

., @
ST -
3b1ﬂ2

in* %{1 — 32p2g? sin? g} > 0

4
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1A
b3l N

if o Hence,
(6) B> B'—%Bw’—%ml?wl

and this is valid for ¢ £ x/2.
4. Let 7 be defined by

= 3B;t,
. N
Assuming B, = 25 from now on, we shall have,
£ “\ .
2 3 Qe
T < 5 ,~’\\ “

and a fortiori r < 7/2. Let us suppose now that ¢ varies in the interval
¢ = ¢ = 7. By inequality (6) we shall have »

1. 1 1 \
— " Bag? — - Buetf = ]
I —e 2W>e23"’_(e 41‘Jq}”—1)>—~“”‘;—QB oe 2&’&

\/
o _1
’N‘\" - lBﬂ@ B“’
because % — 1 > —x for z >0 arlld pg X /
On the other hand, using meﬁ?l"a (gﬁ \§enﬁnd that
1. 1 Fn “?"
R _ e-—ﬁBmp- < e—EBN""{eiz_iP* _ <.§B (p“e —'2an ﬂf‘ }—B“¢ -—Bmp
24 <1g
2\
gince ¢ '\\"
N " Burt 3
e = L8 <l
P\ ¥ }
From the two inequ@h'hes just established it follows that
O ~1p
() ;\'\\ 13 — e 23"‘“ < e Buo'e B
in the inteiyal
Q~ 0<¢<r

8. We turn now to the angle 6. FEvidenily

psing
9——na,rcth_i_ipmsgJ
where
B psing
co-—a,rctg—ig_l_pmsp

By successive derivations with respect to ¢ we find



124 INTRODUCTION TO MATHEMATICAL PROBABILITY [Crap, VII

de _ _p*hpreose . d_ pilp—gsing
de P>+ 2pgcos¢t+4q¥  dg* (P’ + 2pgcos ¢ + ¢)°
o 4pq + (1 — 2pg) cos ¢ — 2pq cos’ ¢
a7 PP -9 (p® + 2pq cos ¢ + ¢%)?
do (p—q) sin ¢f ~ 1 -+ 4pg1-20p%2 +8pg(l — 2pg) cos ¢ —4p2g® cos® ¢
dgt ~ PEPTE (P*+2pg eo8 ¢+

and for ¢ = 0

dw a0 o
— = ——— = 0 —_— = —_ . .\ B
(d«:’)o y (d¢2)u ] (d«’s)o ’PQ(’P Q) .

Furthermore, one easily verifies that in the interval 0 £ ¢ < xf >0

dS 9 . - ""}« )
7 = gpde - 91(1 — 4pq sin g) AN
4 , ‘.“”.,\
A = 2wde - qt(l = 4pq sin? %) -
AY;
Henee, applying Taylor’s formuls and suppqs:i@g}] = ¢ &7, wegetfory
®) X = $Bulp — )¢t P M
where wwwdbrauli{a;"@i‘y.org-in
(9) (M} < g3Bulps ¢l — par?)—,
or 24
O
(10 N ox=Lg
where
8y AOIL| < #Bulp — dl(t — pgrd)=.

Using in?\q\{i:@];jﬁes (9) and (11), we easily find
(12) Siiljgi‘v Bug — x) = 8in (V' Bag) — 1B.(p — g)¢* cos ({1 Brg) + r
whete,\/
(A3) I < 23Balp — {1 = per®)~® + 545B2(p — QUL — pgri)—ts,

provided ) £ ¢ < 7.

G_. To find an appropriate expression of the integral J we split it into
two Integrals, J; and Ja, taken respectively between limits 0, rand r, 7.

We have
1 0~ de 1{~_d
< T 4@
R

T gin T P
2
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because sin + > %— Let 7y =1 g, then by inequality (4)

2
2,
f f A d(,o f ¥ ey
¢ oY
-\

But for positive £ the following inequality holds:

“evdu e
14 e € .
(19 e e a
congequently L\
fR €” 1Bt o-ivVE, .\ -
Bt 3B \,.,’},\

Noting that B(p) is a decreasing function of ¢ we hgge'\f&fr Se=n

R(g) < B() < Je~tVF 0N

Henee, ’xt’\\"
T d‘P 3 _.gd‘—x\’

[ <

,o

and combining this inequility WPQHB‘%@}&'MWS@ established, we
have finally O

(15) 174 <( 1@\2 ¥ m)e W,

7. More elaborate con‘siﬂeratlons are necessary to separate the
principal term and to estithate the error term in Jy.  Making use of the
inequality NG

x:\’":
i"\b.

-4

xﬂ
6 sin &

1 1

qin x

We can presenfv thus:

\' T . “/ .
0 \4

w\Q,
) 2

where
ja] < -——1:—“‘1'_ ffR¢d55:
48z sin 5 0

and, because B < 34¢—3%+«" in the interval 0 < p <7

1Al < ~—~~~——»B—1
3% sin = 3
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Sinece r? £ 3¢ we find by direct numerical calenlation

< 0.0205,

32r sin %

and so, finally,
Al < 0.0205B=L.

8. Referring now to ineguality {7), we can write 2\
2 [(,sin GvVBwe —x), 2 f ipe SN GV Bae — x) L O
2 p e = X0, - 2 [ PR
where :”7’5

Bn ” 1 2 ﬂ
iA1| <ﬂ]'-—6’"7rf E_TB"‘P 1d(p - 87r < 0043\

Combining this with the result of the pre cedmg\eetlon we can present
J1 thus N

,o

= 2| impein (i'mﬁo
(16) gy = —2-;_\[; GW\f’\i dbraulbe@ry Ty lndfp -+ Ay
and : fg"* )

[A2{\< 0.0605B".

9. To simplify the mtkgxa‘fm the right member of (16), we substitute
for sin (¢4/Bhe — x) 1ts exprebsxon {12}, Taking into account inequal-
ity (13), we get (17) &

3Bt Ul Bn 21 . i .
Zﬁ'f 3Bt & (&v ¢ _— X)d(p - %J’; o~iBagr S {f;/B-”(p)d(p _

o

B, T _ Do —
M\:“\,, - -6—;(?) — q)J; e % ¢®cos (v Bup)de + As

whete/
|Aq] < 1%3 lp — ¢l(1 — pgrt)~ f e imeiohdy -

<+ 51—'2-"“__8 2(p - q)z(l __pq.r2)—ﬁj; e-},BW,n(pﬁd(P_
But

L. B . . L \}
J; e~ }Buy ,Pﬁd(’g = SBna’ J; e"iﬂnw“p'id(p = 3(%) B‘;&
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and 80

las] < —=B3p — ¢{(1 — pgr¥)~ + 641(33 — )*(1 — pgry—°B L

4\/_

Now pg < 14, 7% £ 3%, B, = 25, consequently

———B7(1 — pgr?) ™ £ 1 (20) < 0.0385.

4\/2« 204/ 22\ 17
On the other hand, " ;
2 ™
gzl -y _(poeyt 17, 3., 0%
t-porz 1= (50 - () - o 1 2
and for pogitive z the maximum of :\: '

2(31 4 Ba2)—t
o\

is attained for 22 = 1743, whence it follows that s

9 55
Ip —q(1 —per?) 5 = 6%(33) (— < 0.05t.

dbla hhl\a
Taking into account all thi nave 'ry orgln

[As] < 9\091?3 — g|B3%
10. As to integrals in the ;ng\hlland member of (17) we can write

(]_8) %J‘ —} B sb’ln (g‘ V ¢)d J”ﬂ —3Bx quSlD (f‘\/Bnﬁf’)d‘p + Aq

Qz;\\ _ B.lp — Q)f e 1Bt cos ((V Bap)de + As

¢ \ .
where \\ W

1" o0 o 1o s summ
A, <;£ e iBmp;. <3-;B 3p—1v B

and

T

B 2 et 2du < .—B;% —iﬁ.
JAs| <GTr BJ\/— u?du ﬂ/?-,e
=

because

f "ovutdu < e
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for & > 1, as can easily be proved. Finally, taking into account (15),
(16), (17), (18), (19}, we get

2 {7 _ipesin V' Bw),
—_— —3 B 27 W VW RTS +
J %J; gt . @

+ I~3—”(-p—" ) J‘ °u.9—5“'4”(,92 cos (¢ Bap)de| <

(20)

0.065 + 0.091p —q| &

71

3 o B Bt 0.065 4+ 0.00p —gf . 1 ., -
+(110g2+ + 5 +7r )ﬂ%f <~—-~E—+2ﬂ\;ﬁ<
since for B, = 25 \ V)

3 B H B; B—& 1. ”.,}‘ \o/
Flez + g Tt m <y O

. '\'\.
. It now remains to evaluate definite integrals in (20)) " We have

(21) E.f etmeil £V Bop) (§‘V mo) _ f\ W«;m fuy

(22 “-(p _ Q)f —}Bwpx‘p o8 (g_ ;—“@)d‘p _
WW W dbrauhhl ary olpg m J‘w ut

e %u? cos Fudat.

%

N\ 67/ B,
Differentiating the well- knomr\mtegra,l

—a £ 1 EE,
‘Le e\sbxdx—z pc (a>0

twice with respect ﬁo 5 and after that substituting & = 14, b = ¢, we
find for (22) thlgé}pressmn

O P—q

RN\ 6V 2B,

Oqi}ﬁé’:other hand, an integral of the type
L(a) = f iR 2% ¥ du
1] .

can be reduced to a so-called “ probability mtegral 7 In fact, the
derivation with respect to a gives

L) = o 05 cos audu = 3n/ge s
and since L(0} = 0,

L(@) = 4/ [Ceivia,
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Consequently, integral (21) can be reduced to

1 £, d
e U,
\/zﬁ “

Having found an approximate expression of the integral J after sub-
gtituting in it ¢; and ¢y for ¢ and taking the difference of the results, we
find the desired expression of P.

11. The result of this long and detailed investigation can be sum-
marized as follows: N\

Theorem. Lot m be the number of occurrences of an event in qaseries
of n independent triols with the constant probability p. The pmbdb‘zh}y P
of the inegualities O

np + %+ tvnpg S m = p——+§zﬁq

where extreme members are inlegers, can be represenied m\ﬁhg form

[ fg? 0
(23) P=—+ eZd+ |ﬁ—ﬁm%—a—weﬂ+&
\/_ o 6\/ j\ O '

X}

The error term w sofisfies the mequalzty O v

0.12 4 0.18[p = ql
|| < Srwwd ﬁé” ral"_y tﬂt—g‘fn e
provided npyg = 25, N\
By slightly incrcasing the «Lumt of the error term, this theorem can
be put into more convenient’ }blm Let ; and {; be two arbitrary real
numbers and let P denot?\ﬂle probability of the incqualities

np ,\—+~} v npg £ m S np + Lvapg.
If the greatest int*ezg{rq contained in

\»np + N npy and ng — b/ npg

are resppctwt ly, 4, and A, the preceding inequalities are equivalent to
'"\.:” n—A1§m=A2-
) 3

I'e apply the theorem, we set

np — ¥ + fiV/npq = Ay = np + bVnpg — &
np + & + v/ npg =n— A1 = np + bv/npg + 1

6; and ¢: being, respectively, the fractional parts of np + t2v/'npq and
ng — {17/ npg. Hence,

¢ -t+%F€2

- ¥

’ +/npg
i — 0

=i —
T
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Applying Taylor’s formula, it is easy to verify that

e

2 _w ~ e 3 + &~ 0)e” 1 0.061
2d —~——— e T 2du— < e
l\/i? Le ' A/ 2wnpy npg
QP 0" T
oo [0 e 2]—-—~—[u+we i
lﬁ\/'ﬂiﬂfl[ ( De. ( 6v/ ?nrrn;pq
0.069|p — 91
. — #2 oot LS
(1~ o3 )| < 2000
whence, finally, we can draw the following eonclusion: For aJ\Y\two
real numbers &y, £, the probability of the inequalities ¢ >
v npg £ m— np S LVRpg ‘ ™~
L&
ean be expressed as follows: “\
i {* (3 — be®" 4+ (§ —~ ba)¢ {t"i
P=—2=| e¥du-+ - +-
%f v/ 2mnpy ..\“
g 2 —3tgt Ly pg— 2.
2P iy (et — (1 — e + @
i BV%npqi( o\ d (1= #)e

where 8 and 8 are the resmemuﬂafgaéiﬁﬁm PR of
np -+ tav npy o ‘ahd ng — b/ npg
and ~&

e
19 < U\?\Q + 0.25lp — qi & gt
npg

provided npg = 26N\
In particular/3 ':f\tg = —t; = {, the probability of the inequality

.:\" Im - “n-p] = v npq
is expressgeh by
O
N e-

2 f ety 4 LTI Bge g
V2 Jo A/ 2anpg

with the same upper limit for . Laplace, supposing that np + iv/'npg
is an integer in whieh case 6, = 0 and 8, is a fraction less than (npg)—*,
gives for P the approximate expression

2 ‘¢, d 4
= e™dy + ————
§v4 2er; v 2rnpg
without indicating the limit of the error. Evidently Laplace’s formula

coincides with the formula obtained here by a rigorous analysis, save for
terms of the same order as the error term Q.
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To find an approximate expression for the probability P of the
inequality

% - Pl Ze
it suffices to take
_
~ Npg
Then A

N

WA

R e 1 s
P = Py 2 gy 4 @
'\/ﬂj; A 2rnipg %

and evidently P tends to 1 as n increases indefinitely. /THis'is the second
proof of Bernoulli’s theorem. “’\
Referring to the above expression for the probakility of the inequalities
D
bhv/npg S m — np é‘ts\f npq
and supposing that the number of tr’ia,lé"?i increases indefinitely while

{; and i, remain fixed, we immediatelyperceive the truth of the following
limit theorem: The probaﬁ‘é?ﬁf’iﬁ‘%ﬂﬁ?ﬁ@@f‘%%&é“

= ”i/__ﬁp <,
D npq
tends to the limit N A\

O™ 1 J“= ]
A¥ — | e¥du
"\.n. '\/Q_’r i

as n tends t%ﬁ}fﬁity. _

This liteit theorem 1s & very particular case of an exiremely general
theorem which we shall consider in Chap. XIV.

19To form an idea of the accuracy to be expected by using the
foregoing approximate formulas, it is worth while to take up a few

numerical examples. Letn = 200, p = ¢ = 14 and

a5 < m = 105.

The exact expression of the probability that m will satisly these ine-
qualities is
200! . _ 160 . 100-99 , 100:99-98
P = Joomi001 m[l T Z(Tﬁi + o1 -702 T 101 102103 T
100999807 . 10099 93-97-96
+ {07~ 709 - 103 - 104 101102 103 - 104105/ |
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The number in the brackets is found to be 9.995776 and its logarithm to
five decimals

0.99982.
The logarithm of the first factor, again to five decimals, i
2.75088,
whenee _
log P = 1.75070; - P = 0.56325, £\

and this value may be regarded as correct to five deeimals, Let'us sce
now what result is obtained by using approximate formulass\ In our
example \ >

L 3
7%

Wnpg = VB0 =5 b= % - 0.79}(’1&}7

and \
2 ‘E;d 0 520'{;6\ )
 du = 0. Y
The additional term _ N )
\ gﬁ{“’ﬁibt—é’ib}éjﬁﬂorg‘m
/100"

and by Laplace’s formula
0
’\\MP = {},56444,

This is greater than f[.hzgattrue value of P by 0.00119. Now, the theoretical
limit of the error is\nearly
~0 by = 0.004
so that, acially, Laplace’s formula gives an even closer approximation
than ca{lb‘e expected theoretically,
When npg is large, the second term in Laplace’s formula ordinarily
is ohaftted and the probability is computed by using a simpler expression :

9 £t
P = 2 o
\/ﬂﬁe “

In our ense this expression would give

P = 0.52050

instead of 0.56325 with the error about 0.043, which amounts to about
8 per cent of the cxact pumber, Such a comparafively large error is
explained by the fact thaf in our example npg = 50 is nop large enough.
In practice, when npg attains 2 few hundreds, the simplified expression for
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P can be used when an accuracy of about two or three decimals is con-
sidered as satisfactory. In general, the larger ¢ s, the botter approxima-
tion can be expecied.

For the second example, let us evaluate the probability that in 6,520
trials the relative frequency of an event with the probability p = 34
will differ from that probability by less than ¢ = 15¢. To find ¢, we
have the egquation

IV/npg = en ~
where
n=6520, p=% g=% e=g D
which gives A
130:4 "
= —n=—m = 3.2085 (O
/15648 ’ N
and, correspondingly, O
N

-2 f o T = 0.099021.
v 27 Jo \Y
Since m satisfies the inequalities &
Www.dh A1 .
3912 — 1304 < b £ D0 FBRP 130.4

the fractions #, and 6; are 6, =& = 0.4 and the additional term is

O
%ﬂ%é;g—m“ = 0.000009.

Hence, the approxit;m;:fsé value of P is
~0 P = 0.999030.

To judmﬁ(ﬁnat ig the error, we can apply Markoff’s method of eon-
tinued fr;u{bﬁ:)‘ns to find the limits between which P lics., These limits are

O~ 0.909028 and 0.999044.

R M
")

The result obtained by using an approximate formula is unusually good,
which ean be explained by the fact that io our example ¢ is a rather large

number. Even the simplified formula gives 0.999021, very near the

trua value.
Finally, let us apply our formulas to the solution of the mverse

problem: How large should the number of trials be to secure a probability
larger than a given fraction for the inequality

%*-pfée?




134 INTRODUCTION T0 MATHEMATICAL PROBABILITY [Crar. VII
Let us take, for example, p = 14, « = 0.01 and the Jower limi¢ of proba~

bility 0.999. To find = approximately, we first determine { by the
equation

o = 0.999,
el

= 3.201.

which gives

Hence,
n = qu ~ ?‘-9@9(3 201)7 = 24,066, approximately. . (),

. R
We cannot be sure that this limit is precise, since an approxlmate formula
was used. But it can serve as an indication that for m exeeedmg this
limit by a comparatively small amount, the probabm.ty‘m question will
be >>0.999. For instance, let us tako n = 24,300 The limits for m
being AN

8,100 — 243 £ m < 8,1004243,
we find ¢ from the equation »)

“@% W%%ﬁ%g i

and correspondingly ¢

% J' e Tdu = 0.090057.

The additional tels'm\m Laplace’s formula being 0.000023, we find
O P > 0.99908 — 0.00006 > 0.999.
Thus, 24J?3Q{]\trials surely satisfy all the requirements.

4 ~\' ¢ .
"\; v/ ] Problems for Solution

1.YFind approximately the probability that the number of suscesses will be con-
mined between 2,910 and 3,090 in 9,000 independent trials with constant probability
! : Ans. 0.9570 with an error in ahsolute value <10~ {using (23)]

2. In Buffon’s experiment a eoin was tossed 4,040 times, with the resuit that heads
urped up 2,048 times. What would be the probability of having more than 2,050
r less than 1,990 heads? Ans. 0,837.

3. R. Wolf threw a pair of dice 100,000 times and noted that 83,533 times the
urabers of points on the two dice were different.  What is the probability of having
ach an event occur not less than 83,533 and not more than 83,133 times? Does the
»eult suggest a doubt that for each die the probability of any number of points was 1g?

ins. This probability is approximately 0.0898 and on aceount of its smallness some
oubt may exist.
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4, If the probability of an event E is Y3, what number of trinls guarantees a
probability of more than 0.999 that the difference betwoen the relative frequency of
} and 14 will he in abselute value less than ¢.017 Ans. 27,500,

5. Il a man plays 16,000 equituble games, staking $1 in each game, what is the
probability that the Increase or decreasc in hls fortune will not execed $20 or $507

) B Ans. (a) 0.166; {B) 0.390.

6. If a man plays 100,000 games of craps and stakes 50 cents in each game, what
is the probability that he will lose less than $3007 Ans. About 1440.

Y. Following the method developed in this chapter, prove the following formula
for the probability of exacily s successes in » independent trisls with constang
probability p

- v O
. = 1 (q )t 3t)] +a A\
2anpq 64/ npg by

where ¢ is determined by the equation

m o= np + i/ ng:q
0.16 4 0.25|p — & /
faf < 28 £ OB — ) e'{‘é‘%

(npg)t

and

X 3
N

provided npg Z 25.

8. Developments of this chapter can be greatly’ mmphﬁed if p=gq=2%% (s3ym-
metrical case). In this case apg ¢em E'Fﬁﬁﬁﬂi'%lff}nﬁf‘gri% stalement: The probability
of the incqualities

can be expressed as follows: \'\ w
PR N S S ¢ Ol 1t LA
Vo ] 124/ Zen
where |A] < 1/2n“ fsut\ > 16.

9. In cuse of \Crare” events, the probability p may be so small that even for a
large number of trials the quantity A = np may be small; for example, 10 or less.
In cases of this'kind, approximation formulas of the type of Lap]a,c(‘ s cannot be used
with Lm&ﬁd@h{:e To raect such cases, Peisson proposed approximate formulas of a
dlﬁer&s{; ¢haracter. Let P, represent the probability that in # trials an event with
the probability p will oceur not more than s times. Show that

Pm=e'h[1+%+%+--- +1—.2—j'étj-jn:!+ﬂ=Qm+ﬁ
where
la] < (X — 1}Qm i Gaz i
la] < (&% — 1){1 — @n) i Qm < %
and

+1+E
» 4 n

X= 9m -
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Indication of the Proof. We have

BN N

A — -
Po=g|lt 7y at -t T3 s om e

, A
Now, sineeg =1 — "

and
I8N
i1 Con W .k \k\% i{—’{ ey
H(l Tas ) = H(I + et g S0V,
b=D no— A E=0 n—‘):w.
Consequently www.dh};ﬁ}’iﬁiﬁrar}’-org-m
= (B o
MY aeen WM L
P"‘{(l n)e %{+1+1-2+ R ara—
But y .{:}
b\ P . S
;‘\ 1 — =~ <€ 2“’1
:n,:..l ki)
whence e :
P\ .
0 RN LS . RN LA
Pm<’§Q,,s, Qn = [+1+1_2+ tie T
W\ .
On the offier hand,
N
\'"\"' n .
/ —1} . - - -
1P, = E nin } M[n &4 l)q"_“p"‘ ~
=i+l
EERE
- 2 NowN mf N n_J W
! ' 1-2-8 i-lr,
p=mi1
whence
1 = Pg < 21 — @Gn)
and

Pou>eQn +1 — &%,
The final statement follows imrmediately from both inequalities obtained for P,
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10. With the usual notation, show that

}\m
Tm = e_L-“—Q
m!
where
mh  (n—m}k? mlm—1)
—— a5 {(n — mInd md
=g W Zn |1 -4 ; 0<e<I
Q= [ (3{n—?\)3+2n(n-—m) i<
Indication of the Proof. Referring to Chap. I, page 23, we have N\
am A - m—1 ’t‘\\’
T < —I(]. - —) (1 — gj-) '“g\\‘“.
m! n ¥ ) O
Am A n—m ‘— -
7, (l_ﬂ (l_f‘)a A0
! n 6
But ":}\
#—n _x Ln}‘_(n—m)}«g . mL __m.('m—l}
(1—§) < HTTE - ohVe, =,
i R/
whence P : v/
- mh_ (n—mppE Mm{m—1)
L L
wntwr.db raul.isb,r’ar‘y .org.in
On the other hand, N\
R A . m—3  (r—mk? (n-—-mAd
(1 - 5) - (1 + -fH’}”\) N T S T T
n ¢ _s./‘\
; m—1 ~\Q m—1 _mi{m-—1)
I—E = _ .12'4; L )_ 2 5, 2(n—m},
n N n—m
'\;sn
Henee i"\xl
\w’
AN N\ m—1 A M_m(m—l} _(n—-m}M md
MM PV > M T e Tn -e S-w Znn—m),
frg,.. ? "

and a}\;}inri
— - —1) — ma?
AN fr—1 _a ga_h__(n Ikt mim—1 (,n m .
(1 —;) (1-—2}) 7 »e Int 2n 1—.——3(%_;\)3
md
" ontn — m)

If A and m are both small in comparison to # the above-introduced factor @ will be
near 1. Under such circumstances we may be entitled to use an approximate formuls

due to Puisson

;\m
To =—¢

=Y
ml
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The preceding elementary analysis gives means to estimate the error incurred by using
this formula.

' 11. Apply the preceding considerations to the case » = 1,000, g = 2{pg, A = 10

and m =10, Are. 0.1256 < P < 0.1258. Poisgon’s formula gives 0.1251—a

very good approximation. Alo, 0.5807 < Py, < 0.5863. Taking P, = 0.583, the

etror in sbsolute value will be less than 3.3 - 1072 By a more elaborate method it i

found P“, = (.5830.
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CHAPTEER VIII
FURTHER CONSIDERATIONS ON GAMES OF CHANCE

1. When a person undertakes to play a very large number of gam;s
undoer theoretically identieal conditions, the inference to be dragn)rom
Bernoulli’s theorem is that that person will almost certainly(be* ruined
if the mathematical expectation of his gain in a single gamelis negative. )
In ¢ase of a posifive expectation, on the other hand, he i very likely to
win as large a sum as he likes in a sufficiently lapg séries of games.
¥inally, in an equitable game when the mathematisal expectation of a
gain iy zero, the only inference to be drawn from\Bernoulli’s theorem is
that his gain or loss will likely be small in comp’é.rison with the number of
games played. _ P\

These conclusions are appropriaje hp\ifever, only if it is posstble to
continue the series of gavnes/inihefinibeliryvaithian agreement to postpone
the final settling of accounts untik‘the end of the series. But if the
settlement, as in ordinary gambling, is made at the end of each game,
it may happen that even playig a profitable game one will lose all his
money and will have to discontinue playing long before the number of
games becomes large e;n&gh to enable him to realize the advantages
which continuation of,tht: games would bring to him.

A whole series¢0f new problems arises in this connection, known as
problems on the/duration of play or ruin of gamblers. Since the science
of probabili had its humble origin in computing chances of players in
different games, the important question of the ruin of gamblers was
discussed™at a very early stage in the historical development of the
theofy0f probability. The simplest problem of this kind was sotved by
Huygéns, who in this field had such great successors as de Moivre,
Lagrange, and Laplace.

2. Tt is natural to attack the problem first in its simplest aspect, and
then. to proceed to more involved and difficult questions,

Problem 1. Two players 4 and B play a series of games, the proba-
bility of winning a single game being p for 4 and ¢ for B, and each game
ends with a loss for one of them. If the loser after each game gives his
adversary an amount representing & unit of money and the fortunes of
A and B are measured by the whole numbers ¢ and b, what is the proba-
bility that A (or B) will be ruined if no limit is set for the number of
games?

139
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Solution. It is necessary first to show how we can attach a definite
numerical value to the probability of the ruin of A if no lmit is set for
the number of games. As in many similar cases {(see, for instance, Prob.
15, page 41) we stari by supposing that a limit is set. Let » be this
limit. 'There is only a finite number of mutually exclusive ways in which
A can be ruined in n games: either he can be ruined just after the first

game, or just after the second, and so on. Denating by py, P2, . . . Da

the probabilities for 4 to be ruined just after the first, second, . . . nth

game, the probability of his ruin before or at the nth game is Q)
pl+p‘l+ . _E"'pw "s.\\

"N
* Now, this sum being a probability, must remain <1 whatever n is.
(On the other hand, each term of thiz sum i1z =0 for the 8ame reason.
Both remarks combined, show that the series O

Pryprtos+ -

is convergent. We take its sum as the probab\'lity for A to be ruined

when nothing limits the number of gameg :p\a.yed. Bo it is clear that

this probability, although unknown, poegesses a perfectly determined

numerical value. Let us denote h{ ﬁ?g;}}a%‘ eyll;qba_aigmty for 4 to be ruined
LY

when his fortune is z. Th‘%‘”ﬁf"@%‘iﬁ’f seck is y,. Obviously,
) h=1,

for A is eertainly ruined i'fzhghas no money left. Similarly

@) N pw=o

because if the fortuié;of A is a + b, it means that B has no money where-
with to play, and.€ertainly the ruin of 4 is then impossible. Further,
considering, the result of the game immediately following the situation
m which gheé Tortune of A amounted to z it is possible to establish an
equatiomin finite differences which g, satisfies. For, if A wins this game
(the probability of which case is p), his fortune becomes = + 1 and the
prabahility of being ruined later is Yer1. By the theorem of compound
probability, the probability of this case iz PY=r1. But if A loses (the
probability of which is g), his fortune becomes z — 1 and the probability
that the one possessing this fortune will be ruined is #+-1. The proba-

bi]éty of this ease is gy.—1. Now, applying the theorem of total proba-
bility, we arrive at the equation

(3} e = DYerr + QYee

This equation has a particular solution of the form g where g 15 a
root of the equation

a=pat+q.
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If p # ¢ lthere are two roots
1,%

and, correspondingly, there are two distinet particular solutions of

equation (3):
1 and (E) .
P
.\:\’

=0+ D(ﬂ)s P
y P . O
is also a solution of (3) for arbitrary ¢ and D. Now, wemfaﬁ‘diaposc of

' and D so as to satisfy conditions (1) and (2). To thiglend we have the
equations \%

Obviously, N

cC+Db=1 x.\\J
potd( oD = 0, { &
whence AV
. a+b o\ o a+b
— aulibpassy in?
C z+b pa+b’1aUh.]@%w‘oI§&ia _ .pa+b’
and \*

It remains 1o take  =¢@yto obtain the required probability

N _elg =Y _ et — dY)

”\*'\{"9lrrj - gt — pu'—Tb - ?_)n+b — P
that the pl@y\rwﬂ possessing the fortune ¢ will be ruined. Similarly,
the probability of the ruin of B is
a\Y4
Q Ty
LI _pa-H: . qu+b
It turns out that

ya+zb=1;

g0 that the probability that the series of games will eontinue indefinitely
without A or B being ruined, is 0. The probability 0 does not show the
impossibility of an eternal game, because this number was obtained,
not by direct enumeration of cases, but by passage to the limit. Theo-
retically, an eternal game is not exeluded. Actually, of course, this
possibility can be disregarded.
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If p = ¢ = 14, so that cach single game is equitable, the preceding
solution must be modified. In this case, the above quadratic equation
in o has two coineident roots = 1, and we have only one particular
solution of {3), ¥. = I. But another particular solution in this case is
z, 50 that we can assume : .
=C+ D=z
and determine  and D from the equations

¢ =1; C <+ Dla+b) =0 ~
Thus, we find that ’ N
& '\
T 3"
and forz = a Xy
b o
Vo =055 ’
Similarly, giving 2 the same meaning ag abq@;
a X
it -J— b "
If, therefore, each single gamewsiquidbﬁ‘ytﬁ‘&‘%ﬁob&bllmes of ruin are
1nversely proportional to the forthes of the players. The practical
conclusion to be derived from, this theoretical result is sheer common
gense: It is unwize to play ind\éﬁuitely with an adversary whose fortune
is very large without bub@t‘tmg cucgelf to the great risk of losing all
one’s tooney in the couﬁe of the games, even if each single game is
equitable. Gamblerja» ’Wh(} gamble at an even game with any willing
individusal are in ghé*same condition as if they were gambling with an
infinitely rlch ad\remary Their ruin in the long run is practically
certain.

If bmglééames of the series are not eqmtable, that is, p = ¢ the
conrluglqn may be different. Supposing p > ¢q, we have 8 case whoen
theeXpectation of A ig positive; in each single game, A has an advantage
over his adversary. The above expression far y, may be writfen in the

gl
SO

ana, beesuse ¢/p < 1, it is easy to sce that y, remains always less than

G

Zp =
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and converges to this number when b becomes infinite. Thus, playing a
geries of advanlageous games even against an infinitely rich adversary,
the probability of escaping ruin is

)

If « is large enough, this can be made as near 1 as we pleasc, so that a
player with a large fortune has good reason fo believe that in the course
of the games he will never be ruined, but that actually he is very Likely
to win a large sum of money. .

This conclusion again is confirmed by experience. Big ambling
institutions, like the Casimo at Monte Carlo, always Tesere cerfain
advantages to themselves, and, although they are willing'te, play with
practically everybody (as if they played against an inﬁniiély rich adver-
sary) the chance of their being ruimed is glight beé’a}tse of the large
capital in their possession. \

3. In the problem solved above the stakes%’f both players werc
supposed to be equal, and we took them as uni\ps’i;u measure the fortunes
of both players. Next it would be interesting to investigate the case in
which the stakes of A and B are unc 11861 %11 exact solution of this
modified problem, since it depends, on “Offierence equation of higher
order, would be too complicated .tq’o'b’e of practical use. It is therefore
extremely interesting that, following an ingenious method developed by
A. A, Markoff, one can e‘sitslslish simple inequalities for the required
probabilities which give\Q\good approximation if the forfunes of the
players are large in comiparison with their stakes. _

Problem 2, If the conditions presupposed in Prob. 1 are meodified,
in that the stakesyof/4 and B measured in a convenient unit are « and 8
and their respédtive fortunes are ¢ and b, find the probabilities for A or
B to be rujn'&‘ in the sense that at a certain stage the capital of A will
become le}sé‘than « or that of B less than 8.

Solition. Let . be the probability for 4 to be forced out of the
gam}\ by the lack of sufficient money to set a full stake = when his
fortune amounts to x and consequently that of his adversary isa+b—z
Tn the same way as before, we find that y. is & sotution of the equation

in finite differences:

(4) Yo = PYots T Woar
To determine y, completely, in addition to (4), we have two sets of

supplementary conditions:

(5) =gr= - =Wea=1
(6) Yorr = Happ—1 = 7 ° = Yapb—if-1) — 0.



144 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cmsr. VIIT

Equation (5) expresses the fact that if the fortune of A beecomes less
ghan his stake, it is certain that 4 must quit. On the contrary, equation
(6) indicates the impossibility for 4 to be ruined if the other player B
does not have enongh money to continue gaming. Equation (4) is an
ordinary equation in finite differences of the order a -+ 8. It has par-
ticular solutions of the form ¢ where # 1s a oot of the equation

@ phetd — 95 4 ¢ = 0.

The left-hand member for ¢ = 0 is positive and with increasing  #zde-
creases and attaing a minimum when :

o\

(44 7"\ \“’
« + .:’. y
and then steadily increases and assumes positive valyes for large 6.
This minimum must be negative or zero hecause 4 ;“:1‘ ig a root of (7).
Now, if it is negative, there are two positive rootsef (7). One of them
is # = 1 and another > or <1 according as /)"

pge =

o W o
or g

24 g ™ o
R

p <

or else wrw.dbraulibrary org.in

PB — ga < 0NV or >0,

That ig, the positive root of (’Qdiﬁ'erent from 1 i3 >1 when single games
are favorable to B and <1 if$hey are favorable to 4. In case of equita-
ble games, both positivega@ots coincide and 8 = 1 is a double root of (7).
All the other roots of (7}%1”& negative or iraginary,

The regular way td’solve the problem would be to write down the
general solution of :@) involving @ 4+ 8 arbitrary constants to be deter-
mined by con{:ii{i;ons {5) and (6). As this method would lead to a eom-
plicated cxp%ssion for y,, we shall refrain from seeking the exact solution
of our pgob}em, and instead, following A. A. Markoff’s ingenious remark,
we anfhéstablish simple lower and upper limigs for ¥, which are close
enolq{{gh"ﬁ the fortunes of the players are large in comparison with their
stakes.

Lemma. If y, is a solution of equation (4) and none of the numbers

Yo, Yy - -+ Yao1
Yoty Yarbrly - -+ Yorb-fil
is negative, then y. 2 O for x = 0,1, 2, . . . a4+ b.

Proof. Let u® (k=10,1,2, ... a — 1) represent the praobability
that the player A4 whose actual fortune is = (and that of his adversary
a 4 b ~— x} will be forced to quit when his fortune becomes exactly = k.
Evidently v is a solution of equation (4) satisfying the conditions
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u® =0 for e=01 ... k—Lk+1 ... a—La+td
a+b—1,...a+b~8+1; =1L

Similarly, if ¥2(I = 0, 1, 2, . . . 8 — 1) represents the probability that
the player B will be forced to quit when the fortune of A becomes exactly
= a + b — L, v will be a solution of (4) satisfying the conditions

g =0 for t=012...a—1l;a+b ... a+tb—-1-+1,
a+b—-1—-1...a+b—8+1; o, = L

Q"

Thus we get @ 4+ B8 particular solutions of (4), and it is almost eyident

that these solutions are independent. Moreover, since they Teprosent

probabilitics, ¥® = 0, ¢ 2 0forz =0, 1,2, ... a+ b. (Now, any
solution y, of (4) with given values of N
Yo, ¥y, + -« Yt .“’.,\\
Yatd, Yorp—1, + » « Hofb—gtl
ANY;
can be represented thus \\
a-—1 8-D\NJ

Yo = %ku;k) 4 ’Z'y@b_w;s)_

ww iy dpraulibranyerg. in

Hence, y. = 0forz = 0,1, 2, .. a, + b if none of the numbers

2

i;y}, Y1, -+ Yo
%Qx"ym—n e Yaph—pet
is negative. This interesting property of the solutions of equation (4)
derived almost inghifively from the consideration of probabilities can be
established direéfly. (See Prob. 9, page 160.)

The lerqjst(ah\’ﬁilst proved yields almost immediately the following
propositi@nf.\lf for any two solutions y, and y!! of equation (4) the
inequality

o) -
holds for

x=0,1,2,...a-—l;a—l—b,a+b—1,...a+b—.8+1,

the same inequality will be true for all £ =0,1,2 ...a+0 ‘It
suffices to notice that ¥, = y./ — ¥s is a solution of the linear equation
(4) and, by hypothesis, y. 2 0 for 2 =10, 1, 2, ...a—1;a+b
at+b—1,...6+b—8+1

Now we can come back to our problem. First, if the mathematical
expoectation of A
pé — ga
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is different from 0, equation (7) has two positive roots: 1 and 8. With
arbiirary constants ¢ and D

=(C + D¢

is a solution of (4). Whatever € and D may be, ¥ as a function of =
varies monotonically. Therefore, if ¢ and D are determined by the
conditions

Yo =1,  Ylsser =0

we shall have N\
yl i 2=012...a-1 O\
¥yl £ 0 if t=a+b—-8+1, ..a-i-b'\

and by the above established lemma, taking into accourﬂ; ct)ndltlonq (5)
and (6), we shall bave for the required probability the lelowmg meguality

y"ﬁ ES y.ﬂ
or, substituting the explieit expression for y s

gutb—5+1 gé
Vo2 R T L
db. uJ:lnary org.in
If, on the contrary, C and D are ri‘termmed by
ylt—l ~ 1 y:.:—{—b 0
we ghall have

A\
Yzl iK'\‘~-’x=o,1,z,...ar1
Y. 20 t=a+b—-—841,...a+b
and <
AN ' v gotbmati . ge—artl

N TUgstbett 1
Finally}%king 2 = a, we obtain the following limits {or the initial
probabilify ya:
\'"\3 gBrt — 1 -1
fete—pti ] goto—ati 7’
They give a sufficient approximation to y, if @ and b are large com-
pared with « and g3,

If each single game is equitable, equation (4) has a solution with two
arbitrary constants:

=+ Dx,
Proceeding in the same way as before, we obtain the inequalities

b—8+1 b
R Ry ey R s



8mc. 4] FURTHER CONSIDERATIONS ON GAMES OF CHANCE 147

4. To simplify the analysis, it was supposed that nothing imited the
number of games played by 4 and B so that an eternal game, although
extremely improbable, was theoretically possible. We now turn to
problems in which the namber of games is limited.

Problem 3. Players A and B agree to play not more than »n games.
The probabilities of winning a single game are p and g, respectively, and
the stakes are equal.  Taking these stakes as monetary units, the fortune
of A is measurcd by the whole number a and that of B is infinite or af
least so large that he cannet be ruined in n games. What is the proba-
bility for 4 to bo ruined in the course of n games? O\

Solution. Lot y.. represent the probability for 4 to be tuined when
his fortune is measured by the number 2 and he cannot pIay more than
t games. The rcasoning we have used several times) shows that y..
satisfies a partial equation in finite differences: ~“’~.\\

(8) Yer = PUer1,e1 + Q’yz_1 c—\{n

Moreover, if A has no money left, his rum\& certain, which gives the
conclition ¢

(D) Wi di;r}mlibli’ﬂ"&;‘ 01‘@& 0.

On the other hand, if A still po'mcsﬁcs money and cannot play any more,
his ruin is impossible, so thate

(10) ek, SN it z>o

Conditions (9) and {J}) together with equation (8) determine y..
(omplc tely for all pOsItnc values of x and £.  To find an explicit expres-
sion fory., we -111 use Lagrange’'s method, HEguation (8) has particular
solutions of the@orm
K \’% ) alﬁt

wherd *3nd 8 satisfy the relation

\ 3 : 05,8 — paz _I_ q.
We can solve this equation either for 8 or for & which leads to two different.
expressions of ¥, Solving for § we have infinitely many particular
solutions

a.x(pa _|_ Qa—l)t

with an arbitrary « and we can seek to obtain the required solution'in the
form

p=sL f 2 {pa + ga—)(a)de
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where f{a) is supposed to be developable in Laurent’s series on a certain
circle ¢.  To satisfy (10) we must have

Sl e H{a¥a = 0 for z+1,23, ...

2t ).
which ghows that f(a) is regular within the circle e.  To determine f(«)
completely, we must have, according to (9)

N\
——I—:Jl(pa + ga‘l)‘i(ﬂ)-da =1 for t=0,1,2 ...%
21 z o ,\«\.
All these equations are equivalent to a single equation :;’}: -
A fede 1 N
Zeifoe — pea® —ge 1 — ¢ ’\\‘“
holding good for all sufficiently small e.  The integrsind hag a single pole
aq within ¢ defined by N
ap — pecg — g _.\(r
and the corresponding residue is O
www.dhr aul@ral y.org.in
D
e = J(aa).
But this must be equal to N
R
’\'\"' 1—e
or, substituting for its cxpression in ey
P 2
{‘\s pal} — + q

and hence%}r all sufficiently small ap

..\:" — pat
£\ ___.____ .
O flay = L=k

thats, if
___g—pa
fle) pet —a+tq

all the requirements are satisfied. Taking into account that pta=
we have

ORPEI .
a g — pa

flo) =1+ 5[1 +- (—'*'q-’)]a

=l

and also
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The expression for y.,¢is therefore

1
Yer = m‘ﬁa”"l(pa + qa—l)‘zc,.a“da
n=0

wherecp = 1 and ¢. = 1 + (p/g)~if n 2= 1.
Tt remains to find the coefficient of 1/& in the development of the

integrand in a series of descending powers of a. Since N\
¢ N\ ¢
a1 —1)¢ V1 il 2l e——1 )
N pa + gat) = X Clplg- et R
1=0 Dt

this coefficient is given by the sum

i—z $ m;\ v

5 v/

zcipqu TR B

=0 ) '\ @
texjmded gver all mt-ege{fswl &;TSE‘}- QUEE T{‘;%_gk_r;‘%l}aﬁtest integer not exceeding
Tx . Hence, the final expression :f-sz‘r the probability e.» is

n—d \y : .

ZuQ" .

) C gan = RO ]

\\1’50
with the agreement,,.iri‘ﬂase of an cven n — @, to replace the sum
o 0 0
“\x.\“. P’ t+q
correspon(‘ﬁi.g’“%o ;=2 ; ¢ by 1. It is natural that the right-hand
membeg:'fi‘f the preceding expression should be replaced by 0 if n < g,
wifich'is in perfect agreement with the fact that A cannot be ruined in less

thaw e games,
The secend form of solution is obtained if we express « as a function of

8. The equation
pat —af +¢=0

having two roots, we shall take for « the root

_ B VB — 4pg
@ -————-—2p

determined by the condition that it vanishes for infinitely large positive
3 and can be developed in power series of 1/8 when 18 > 2+/pg. Using
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@ in this perfectly determined sense, it is easy to verify that

_ 1 (ﬁ—“\/ﬁz*‘lpqx B gs
Yot = 555 ), 2p BF—1

where ¢ 1s a cirele of radius > 1 described from 0 as its center, satisfies all
the requirements. For i is a solution of equation {8}, Next, forx =0

and ¢ 2 0,
_ 1 £ 1 1 .. — N\
Yoo = 21r£J;B (E + 7 + )dﬁ 1 ‘

and, finally, fort =0 and z > 0 P (M

Yen = Lf(ﬁ ~ VB = apgY d8 _ o\

&/
because the development of the integrand into pQ’\fa,\'er geries of 1/8
starts at least with the second power of 1/8.

To find ¥.,,, in explieit form, it remains to ﬁtﬁ'the coefficient of 1/8

in the development of \\
( Wuﬁﬁﬁ bi' ﬁrg;sn
ARl

in a series of descending powers ofvﬁ Let

e D

(B — V8 — 4?9 Z =y lopr
p ]8:—!—1
multiplying this series by

B ,= ;;1 i3
7 ,K\B T +B+Bz

we find that ¢! t\@ Ncoefficient of 1/8 in the product is
le 4 lopr + + Ly

_I._..a

and henﬁeo
“\;".’ Yot = Zz + I:z'-}--l + ot + IG

provided t = z, for otherwise y,, = 0. The quadratie equation in « .
can be written in the form

1
@ = g + pa?)
B
and the development of any power of its root vanishing for 8 = « into

power series of 1/8 can be obtained by application of Lagrange’s series.

We have
¢ = zf A g + pERyrgt
® = 2 n! [ dnt et

nex
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but
1fdg +peret| | @2 D,
n![ a1 o At 0P
fn=2z+4+2,and =0ifn =23+ 2{+ 1. Henee,
+ 2 -1
loyoi = E(x—'““— g Hp
: iz + 2)! ~
lopaiy: = 0, X
and finally 2\
\S
3 5),
(12)  yon = Q“}:l + %pq + %(?@2 + 9;(&_:?1' .4;(_&3# Dtpgys +
ala+k+1 ---~a‘\—i\—‘2k-—1
+ -+ ( 1-)2--:(?0 )(Pt})k]
fn— a n—1—a 7o
where k = 5 Or k= — accm:d.ixilgV as n and a are of the

same parity or not. . OY

B. The diffcrence ya,wtwﬁl?nlﬁluéwéa?{ %‘%fgbabiﬁty for the player 4
to be ruined at exactly the nth gamesand not before. Now, this differ-
ence is 0 if n differs from @ by an odd number, so that the probability of
ruin at the (@ + 26 — I)st game is 0. That is almost evident because
after every game the fortune\of 4 is increased or diminished by 1 and
therefore can be redueetk{b“o only if the number of games played is of
the same parity ag a. Nf » = a + 2¢, the difference yo,» — Ya,n—1 18

ale’+i+1) - - (@+2~-1) ...
»\fi“ 1-2°3-- 4 ¢
Such, therezfﬁie,'is the probability for A to be ruined at exactly the
(a + 2i)th\game. The remarkable simplicity of this expression obtained
by I}}gaﬁé‘which are not quite elementary leads to a suspicion that if
mjgi{t‘élso be obtained in a simple way. And, indeed, there is a simple
way to arrive at this expression and thus fo have a third, elementary,
solution of Prob. 3.

Considering the possible results of a series of @ + 2¢ games, let 4
stand for & game won by A, and B for a game lost by 4. The result of
every series will thus be represented by a succession of letters A and B,
We are interested in finding all the sequenees which ruin A at exactly
the last game. Because the fortune of A sinks from a to 0 there must be
iletters 4 and ¢ + « letters B in every sequence we consider. Besides,
there is another important condition. Let us imagine that the sequence
is divided into two arbitrary parts, one containing the first letter and
another the last letter of the sequence. Let = be the number of letters B,
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and y that of letters A in the second or right part of the sequence.  There
will be a + 4 — @ letbers B and ¢ — y letters A in the first or left part. .
Tt means that the fortunc of 4 alter a game corresponding to the last
letter in the left part, becomes
ati-y~—(ati—2)=2—y

and since 4 cannot be ruined before the (e + 27)th game, ¥ must always
be >y. That is, counting letters 4 and B from the right cnd of the
sequence, the number of lotters B mnst surpass the number of letterhA
at every stage. Conversely, if this condition is satisfied the suecession
represents a series of games resulting in the ruin of 4 at the éndiof the
geries and not before. \

To find directly the number of sequences satisfying tlm rgqmrunent
is not so easy, and it is much easier, following an .ingomous method
proposed by D. André, to find the numbeor of all tho feraining sequences
of i letters A and 7 + a letters B, These can be §v1tied mto two classes:
those ending with A and those ending with B:"/Now, it is easy to show
that there exists a one-to-one correspondence between successions of these
two classes, so that both classes contain, thé-samne nurober of sequences.
For, in a sequence of the second clagi¥ending with B) starting from
the right end, we necessaily find s.Shortest group of letters containing
A and B in equal numbers. Thi® group naust end with 4. Writing
letters of this group in revessésorder without changing the preceding
letters, we obtain a sequgu‘.&e\ of the first class ending with A. Con-
versoly, in a sequence of<the first class there is a shortest group at the
right end ending with 8'and containing an equal number of letters A and
B. Writing letfers @i this group in reverse order, we obtaln a sequence
of the second ('1353\

An example Wwill illustrate the described manner of establishing the
one-to-one £or Lspondunce between sequences of the first and of the
gecond ckasa Congider a sequence of the first kind

o

W BIBBABAA.

The vertieal bar separates the shortest group from the right containing
letters 4 and B in equal numbers, Reversing the order of letters in this
group, we obtain a sequence of the second class

BIAABRARB

and this sequence, by application of the above rule, is transformed again
into the original sequence of the first class. The number of sequences
- of the first class can now be easily found. It is the same as the number of
all possible sequences of ¢ — 1 letters A and @ + 1 letters B, that 13,
(@+2i—1NY _(e+i+De+i+2) - (a2 —1)
G- Dl + ot 12 -1 '
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The total number of sequences in both clagses is

@t i+ Na+i+2) - (a+ 2 —1)
< 1-2- -G -1 )

Hence, the number of sequences leading to ruin of 4 in exactly & + 2¢
games is

£a+:-5+1)(a+’£-{—2)---(a+2€)_ N\
12 -3
_ole it Die+itd - @+2—-1) _ D
12 -G-1) QO
_ala+41) - et 2 — 1)
= 1-2,75° ¢
\\

As the probability of gains and losses indicated By évery such sequence
is the same, namely, ¢#*p? the probability of ,@e ruin of 4 in exaetly

7

a <+ 27 games is RS

and hence the second expression fqinia for ye. follows immediately.

The problem concerning the“probability of ruin in the course of a
prescribed number of gamegor a player playing against an infinitely
rich adversary was firsg eonsidered by de Moivre, who gave both the
preceding solutions wjt-ho\t proof; 1 was later solved eompletely by
Lagrange and Laplaec? The elementary treatment can be found in
Bertrand’s “Caleih @és probabilités.”

6. Tormulag/d1) and (12), though elegant and useful when » is not
large, becomé}rﬁpract-icable when n is somewhat large, and that is pre-
cisely the fobst interesting case. Since the question of the risk of ruin
incun;edjiii' playing equitable games possesses special interest, it would not
bedbud-of place at least to indicate here, though without proof, a con-
ve%ﬁt approximate expression for the probability ya.. in case of a large
nand p = ¢ = 14. Let { be defined by

a’ "
V2 +3)’
then for » = 50 it is possible to establish the approximate formula
2 . 8
Yoo =1 ——=] ¢ dz + n

Vo

where —1 < 6 < 1. Suppose, for instance, that the fortune of & player
amounts to $100, each stake being $1, and he decides to play 1,000,
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5,000, 10,000, 100,000, 1,000,000 games. Corresponding to these cases,
we find

t = 2.2354, 0.9999, 0.7071, 0.2236, 0.0707

and hence

2 {"g: = 0.9084, 0.8427, 0.6827, 0.2482, 0.0796.
Vo

The corresponding approximate values of 10, are .
0.0016, 0.1573, 0.3173, 07518, 0.9204. ~
Thus, for o player possessing $100 there is very little riske oh\ bemg ruined
in tht course of 1,000 games even i he stakes $1 at eaoh\gam(‘ The risk
is considerably ]arger but gtill fairly small, when 3, 000 zames are played.
In 10,000 games we can bet 2 to 1 that the player will still be able to
continue. But when the limit set for the yliwiber of games becomes
100,000, we can bet 3 to 1 that the player w ilN;)‘é ruined somewhere in the
course of those 100,000 games.’ Fm%}},{i there is little chance to cscape
ruin in a series of 1,000,0 gameléau_ p a6 Tis ofl ruin nafurally increases
with the number of games, but nof za fast as might appear at first sight.

7. We conclude this chapters by golving the following problem,
where the fortunes of hoth players are finite.

Problem 4, Players A“‘a)id B agree to play not more than n games,
the probabilities of widding a single game being p and g, respectively.
Assuming that the fortunes of A and B amount to ¢ and b single stakes
which are equal fugboth find the probability for A o be ruined in the
course of n gar

Solution, “Let Zs: be the probability for the player 4 to be ruined

when his fortune is = (and that of his adversary a + b — z) and he can
play only ¢ games. Iividently 2, satisfies the equation

N
(1Q\; - Bus = PRapip-1l T Qfpati-t

perfectly similar to equation (8), but the complementary conditions
serving to determine 2, ; completely are different. First we have

(14) 2oy = 1 for t = 0.
Next,
(15} Zagpe = 0 for t=0,

because if A gets all the money from B, the games stop and A cannot be
ruined. Finally,

{16) 2z = 0 for z=123,...a4+b 1,
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because 4, having money left at the end of play, naturally cannot be
ruined.
Since {13) has two series of particular solutions
o®St and o' 28t
where « and « are roots of the cquation
pa® = fa+tg=10

both developable into series of descending powers of 8 for |8} > 1, e
ghall seek z,; in the form AN
NS

Zap = g}rfiﬁ[f(ﬁ)a” + p(B)a'"|ptdg. R ".:’«:

Here the integration is made along a eircle of sufﬁcient’ly:\l;t}ge radins and
f(8) and ¢(8) are two unknown functions which cai+be developed into
sericg of deseending powers of 8. Obviously z,z,iiét‘isﬁes {13) identically
inxandé Forz = 0andt 2 0 we have theleondition

o 1@ FYEPBETRER0, 12,

which is satisfied if N
O\ ;. 1
(17) fFFS“)>+ w(8) = =T
Condition (15) will be gatisfied if
as) O H7(8) + a2o(6) = 0

and it remains Qe\%silbﬁv that at the same time (16) is satisfied. Solving
{17) and (18),(we¢'have
X

K { s 1
N\ f(ﬁ) = & — gerb g — 1
N\
o..\' _— aa-i—b i 1
Y, oB) = mr_ m g1

and
a’n+bat — ot ba’z

(19) f(,@)a” + p(ﬁ)a” = (}9 — 1)(am—|—b — u+b) =

g x a’u—!—b—z — au+b—:
= 5) (B — e — aa+.‘7)'
Now let « be the root vanishing for 8 = = and o’ the other root whose

development in series of descending powers of @ starts with the term
containing 8. Evidently the development of (19} for

a:::l,2,3,.-.ﬂ+b"1
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does .not contain terms involving the first power of 1/8, and hence
Zoo =0if 2=1,2,3 ...¢+b— 1 as it should be. The solution
of (13) satisfying (14}, (15), (16} being unique, its analytical expression is
therefore

et =

q T
(E,) f ol — getb—2 gt

P oottt — ot ‘3 — 1

whence for z = ¢ and & = n
G ¢ N\
5 J‘ b — ol ﬁﬁdls ”.,}‘ N/

Ban = i ) &+ S aath g~ 1 o\

To find an explicit expression for 2, it remains {a ﬁnﬁ the coefficient of
1/8 in the development of O

] ,‘b - b O:'g\“
p) & — gatep — 1
dbraulipgaly org.i _ ]
in series of descending po&e\ﬁ‘g oib lﬁa . l%tﬁi? cafi be done in two different
ways. [irst we can substitute for e& \its cxpression in e:

4

or de\rol()]smg into series

b at+b s1+2b "
R O R pey
But the cocflicient of 1/8 in
g
g8—-1
by the second solution of Prob. 3 is the probability 4. for a player with

a fortunc m to be ruined by an infinitely rich player in the course of
games, Hence, the final expresgion for 2, , is

_ » b 2 at+b D atzb
» = Yam — 7 Yotrtbn + g Yot abn — o Ysuztbn + = °
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the terms of this series being alternately of the form

p katkb
(E) Yeokryat2ebn
and
p\FrHGHDb
- E) Yokt ati2e+2bn
for £ =0,1,2 ... . The series stops by itself as soon as the Airst
subsecript of ¢, becomes greater than =. N
To obtain a second expression of 2, we notice that 2\
,.\\ o
a’b__ab ﬁal'b_ab_.qafﬂ+b_aﬂ+b-Q'.“»/
@ — ottt T T d —a ..F‘}‘.E
7,
- . . . N
is a rational function of # whosc denominator o\
N
fab otd
fa ) —
BR=rpb \,
& — & 7 '

W

is a polynomial in 8 of the degreea + b — 1 ’ To find the roots of B =
wesel 8 = 2\/‘—& ¢os @ "Bindkr %hbﬁ;’&l y'org in

¢“'~‘ s
o - \/Eg% N \/gm
NS »

we have A

\:(q 545~ sin (a + b)e
ae)
The equation RS
P\ sin (¢ + b)e _
’\“' gin ¢
having rootgw
. ,\ hr

N3 = ——— = 2 ... b‘—l,
i,,\‘v' ©h {I"‘“b’ h 1! i a+

tl}e\ci —[— b — 1 roots of R are
Br = 2/ g CO8 ¢y

Now we ean resolve the rational function P into a sum of simple elemerts

as follows:
ad-b—1

P = E@) + 5 +Eﬁ_ﬁh

where ( )
— ¢
A'J = q:+:f

— ga+b



e
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and for A > 0

: et 5in ¢s . (e0s o)
= —@Vr ( @0 - 2vageosen T F (cos ¢n)

while E(8) is the integral part of P. The coefhicient of 1/8in the develop-

ment of P being

afb-1
Aﬂ 'l"' E Ah; \
B=1 N
oA\
we have a new explicit expression for ze.q: P\
o “\«
(20) Zom = QZEL?: gfﬁ, _ RS
aatb—1 . wh O ]
@vm@“%wqﬁﬁg MEEED {S- wah h
T atb gy S gy
1 — 2+/pg cods

ATATA dbrau]lbl ary r‘ﬁ;‘lb

This expression shows clearly that vzm, “with increasing n, approaches
the limit R\
2 N PRt~ )

{ \v\ ,pa+b — goth

representing ihe probabiﬁty of ruin when the number of games is unlim-
ited, in complete accerd’with the solution of Prob. 1.

_ MY
The first tem\’iﬁ (20} naturally roust be replaced by -ﬂ n case

P=g= / \Thls form of solution was given first by Lagrange.

T, Y
.

N® Problems for Selution

i\f*layers A and B with fortunes of $50 and $100, respectively, agree to play until
one of them is ruined. The probabilities of winning s single game are 24 aund 14,
respoctively, for A and B, and they stake $1 at each game. What is the probability
of ruin for the player 47 Ang. Very nearly 2758 = §.88.107%

2. I A and B at each single game stake $3 and $2, respectively, and have fortunes
of $30 and $20 at the beginning, what is the approximate value of the probability
that 4 will be ruined if the probability of his winning a single game is {a) p = 3%;
@ p = 2t

Ans. (2) 0.40 + 4; 1A| < 1.7 X 1072 (B) 0.96 + A;]A] < 4.6 X 1075,

3. A player A with the fortune $a plays an unlimited number of games against an
nfinitely rich sdversary with the probability p of winning a single game. He stakes
§1 at each game, while his rich adversary risks staking such a sum £ as to make the
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game {avorable fo A. What is the probability that A4 will be ruined in the course
of the games? Give numerieal resilts if (@) 0 = 10, p = 34, 8 = 3; (5) & = 100,

= 14,8 =38. Ans. Let # < 1 be a pesitive root of the equatcion postt — g g =0.
'lhc required probability P is: P = g,

In case () P = 0.002257; in case (b) P = 3.43 . 1027,

4. A player A whose fortune is $10 agrees to play not more than 20 games against
an infinitely rich adversary, both staking $1 with an equal probability of winning a
single game, What is the probability that A will not be ruined in the course of
20 garnes? Ans. 09734,

B. Players 4 and B with $1 and $2, respectively, agree to play not more thams
equitable games, staking $1 at each game. What are the probabilities of them {um?

2341 R R B L
Ans. FOI'A.§ _W,f‘JIB:g_ "-?%T
6. Players 4 and B with $2 and $3, reapectively, play a series of eq’ﬁi'ta,ble games,
bolh staking $1 at each game. What are the probabilities of theif/# Apin in » games?
\"

Give the numerical result if n = 20.  Ans. O
L3e ] 1 nte
Ford: 3—5{(‘\/;_{‘1) (\/_ H e—11fm§sc1d e=2if n is even.

iy
For B: - _”‘{(‘\/5—1—1) )' [} 7;‘ ;lifnls even, n=2ifnis odd.
5 4 W ﬁbr rary

7. Find the expression of ye,«, the proba.bllkty o e ruin of A when his adversary
B ig infinitely rich, corresponding to i’ormuﬁm {20). Ans. From the definition of a
definite mtegral it follows that

e
@v%w(Jﬁr

B RPN, Pf 8N ¢ 81N dy¢ (008 ¢)*de
Yom THee T LN w 01— 24/pgoos e

where Vo

If the g@ﬁ{ési;re equitable and » differs from a by an even number, then

V

T
2 #in o
yﬂ=1——F—. % cos @) e
SO B g

This formuls was given by Laplace.
8. Refcrring to the last formala in the preceding problem, show that

Yo = 1 — 7 ewgdu + A
where
tn
1 q -2t
@ 32
. —_ —-€ .
! |A1 < 2 + "

T V2m+ B
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Indication of the Proof. It is important to prove the following incqualities firsi.

Mt ._ﬂ__'-[—-% 2 T
e (008 o)™ 57 for 0<ps T
s ¢ 2
ntl ...f"._-.{_'j ,__(-n-i—l)w‘ T
f,g.g?_s._‘fl,_ 3 ¥ 8 for 0<p =~
sin ¢ 4
whence
L2
glosoyt | SRl ombd L o o< .
: 3 N\
sin ¢ 8
N
provided 0 < ¢ £ «/4. The rest of the proof iz easy. AN

9. Attempt a direct proof of the important lemma (page 144} usod m 1he diseus-
gion of Prob. 2.

Hint: The proof can be based upon the following proposm{ml genemhzmg an
important theorem on determinanis due to Minkowski: Let \\

fi = awrs +oanxy + 0 0 0 A Gaida) i=39 2 3, n
be & system of linear forms whose eocflicients satisly tb\&\i’ollowing eonditions:
VD aw>%aeuw 205 kEi;autou+ - - 4\a;n- &= 0.
{2) One of thesc aums ig positive.
¥f these forms assume nonnﬁg&hdbﬂ&ﬂﬂl@? a’ﬁﬁé:?‘&é?v HmzME=12 ... 7).
Proof by induction: Express 2, through xl, :sg, .+ Za-1, thus:
5 _ e = 8iam .aaurg L W
T 3 a’%n -

and substituie into the n.mamgm}; Torms. Show that the resuléing forms in =z, s,

. Zs_1 satisly the samne qiwadcltwns {1} and (2). Henee, it remisins to prove the
proposition for two formq which can esrily be dono.
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CHAPTER IX

MATHEMATICAL EXPECTATION .

L. Bernoulli’s theorem, important though it is, is but the first Jink
in a chain of theorems of the same character, all contained in an extreniely
general proposition with which we shall deal in the next chapter! But
before proceeding to this task, it is necessary to extend thedefinition of
“mathematical expectation”—an important concept ;uriginating in
econnection with games of chance.

H, according to the conditions of the game, thé\player can win a
sum ¢ with probability p, and lose a sum b witl}‘péfbabiﬁty g=1-—1p,
the mathematical expeetation of his gain is by@eﬁnjtion

www.dbﬁ'&u_l_ibgrgl:'}f.érg.in
Considering the loss as & negative gain,we may say that the gain of the
player may have only two values\\¢ and —b, with the corresponding
probabilities p and ¢, so that thé€ expectation of his gain is the sum of the
products of two possible va.l}le’a\af the gain by their probabilities. In this
case, the gain appears as ‘a\\xﬁriable guantity possessing two values.

Variable quantities #ith a definite range of values each one of which,
depending on chaneés ran be attained with a definite probability, are
called “ chance vaziables,” or, using a Greek term, “stochastic” variables.
They play anjfiptrtant part in the theory of probability. A stochastic
variable is %od (a) if the set of its possible values is given, and (b) if
the probaBility to attain each particular value is also given. o

L3 Busy to give examples of stochastic variables. The gain in &
gamé of chance is a stochastic variable with two values. The number of
points on a die that is tossed, is a stochastie variable with six values,
1,2, ... 6, each of which has the same probability 1. A number on
a ticket drawn from an urn containing 20 tickets numbered from 1 to 20,
is 5 stochastic variable with 20 values, and the probability to attain
any one of them is 149. Each of two urns contains 2 white and'2 black
balls, Simultancously, cne ball is transferred from the first urn into the
second, while one ball from the latter is transferred into the first. After
this exchange, the number of white balls in one of the urnsmay be regarded
as a stochastic variable with three values, 1, 2, 3, whose corresponding
probabilities are, respectively, 4, 14, 14. It is natural to extend the

concept of mathematical expectatit;rﬁllto stochastic variables in general.
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Suppose that a stochastic variable » possesses n values:

P, ¥z, v . o &gy
and
Py P2 o - - Pa

denote the respective probabilities for z to assume values 21, s, . . . @n
By definition the mathematical expeetation of z is

E(x) = pm + pata -+ - - - A Do ~\

Tt is understood in this definition that the possible values of the
variable z are numerically different. For instance, if the varlable is &
number of points on a die, ifs numerically different v alues‘are 1,2,3,4,5,
6, each having the same probablhty, 4. Byde finition “the tathematical
expectation of the number of points on a die is .m.\

11+ 2+3+4+5+6) 235

1f the variable is the number on a ticket d aﬁ}l from an urn aontaining
20 tickets numbered from 1 to 20, its numierically different valucs are
represented by numbers frem. dbrﬁmlﬁé},ém@ &HB probability of cach of
these values is 144, so that the mathematlcal expeetation of the number
on a ticket is

Y ‘ Eau.4-2-+ -+ 20) = 10.5.

/ 2. 1t is obvious that th\s computation of mathematical expectatlon
requlres only the kno rlwe\dge of the numerically different values of the
variables with their’tespective probabilitiecs. Bui in some cases this
eomputation 18 groatly simplified by extending the definition of mathe-
matical expectationh. Buppose that, eorresponding to mutually exclusive

and exhaustiveleases Ay, Ay, . . . A, the variable z assumos the values
Ty, Loy . Nm, with the corresponding probabilities pr, ps, . . . P
we can djgﬁne the mathematical expectation of by
A
N\ E(x) =pai+paa+ © - - + Pum

W\hat distinguishes this extended definition from the original one is that
in the second definition the values z1, 22, . . . ., nced not be numerically
different; the only condition is that thoy are determined by mutually
excluswe and exhaustive cases,

To make thig distinction clear, suppose that the variable z is the

number of points on two dice. Numerically different. values of this
variable are )

2,3, 4,56, 7,8,9,10;11,12

and their regpective probabilities

BLB',- Bgﬁ'r '335': '8%6'; Bﬁe': ‘536': ‘Siﬂ': 252? a"m '325'1 ?.15'
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Therefore, by original definition, the expectation of z is
TR R BIHE R IR B IR =P =T

But we can distinguish 36 exhaustive and mutually exclusive cases accord-
ing to the number of points on each die and, correspondingly, 36 values
of the variable z, as shown in the following table:

First die Becond dic z First die Second die z,
&7
1 i -2 4 1 (NS ”
1 2 3 4 2 6
1 3 4 4 3 LAY 7
1 4 5 4 1’ 8
1 5 6 4 O 9
1 Li] 7 4 b 10
AY;

2 1 3 5 '\\ 1 6
2 2 4 & x 2 7
2 3 www.d&rauhibraraﬁ.byg.in 3 8
2 4 6 a8 4 9
2 5 7 AN b 10
2 6 8 N5 6 1t
3 1 A4 6 1 7
3 2 }5 6 2 8
3 3 g{Ve 6 3 9
: AN 6 4 10
/3 5 N\ 8 6 5 it
q F Y 9 B 1] 12

)Y . .
The prob&bility of each of these 36 cases being }4e, by the extended
definitionsthe mathematical expectation of z i3

2034 430 5-446 6 +7-6+8 59 ¢+10:3 4112412
N 36

=7
as 1t should be. ' .- :
I is important to show that both definitions always give the same

value for the mathematical expectation. ' .
z. be the values of the variable z corresponding

Let 21, T2 - - -
to mutua’lly ,exclusive and exhaustive cases Ai, Az . .. An, and,
P1, Ps, . . . Pm, their respective probabﬂities. By the extended defini-

tion of mathematical expectation, we have

(1) E(z) = pixr +patat 7 + PrTm
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The values %1, 2, . . . Tm are not necessarily numerically different,
the numerically different values being

E! ?]! g‘? o h'
We can suppose that the notation is chosen in such a way that
Ty, ¥z, . . . L, are equal to £;

Zatiy Tatsy - . . &p arc equal to u;
Thaty Topa, - - - T ATC cqual to

Tip1, Lrpe, .« . - Ty are equal to A, A

Henee, the right-hand member of (1) can be represented thus: A\

Pr+pt 0 AP F PetrF Par + A+ O+
+ Prs1 + Drye 'f':‘ © 4 padh
But by the theorem of total probabilities, the sum¢ 0
_ Pr+pet 0 P ’
represents the probability P for the variab]e':vﬂ;\f assume a determined
value £, because this ean happen in o mutually ‘exclusive ways; namely,

when ¢ = @, 0r & = 24, . . . 0T & = 2, { BY a similar argument we see
that the sums www,dbraulj.bl:af"y.org.in

Patt + ifl’a+z;ﬂ'f.‘“ R ol %

Por1 + Poa 0+ D

p:{zﬁ‘\}‘)wz + s
represent the probabiliti%c.} Q, B, ... T for the variable z to assume
values %, {, . . . A Therefore, the right-hand member of (1) reduces
to the sum A\

.'\u . )
A PE+On+ RO+ - - T

which, by the*original definition, is the mathematical expectation of .

I, qofrfesponding to mutually exclusive and exhaustive cases, a
vari&bfefx assumes the same value a—in other words, remains constant—
it isalmost evident that its mathematical expectation is g, because the
sum of the probabilities of mutually exclusive and exhaustive cases is 1.
It is also evident that the expectation of ax where a is a constant, is
equal to a times the expectation of z.

Note: Very often the mathematicsl expectation of a stochastic variable jg ealled
ita “mean valye.” :

' MATHEMATICAL EXPECTATION OF A Sum

3. In many cases the computation of mathematical expectation is
greatly facilitated by means of the following very general theorem:
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Theorem. The mathematical expectation of the sum of several variables
is equal to the sum of their expectations; or, in symbols,

Exty+z-+ - +w=Ex)+Ey +EE+ - -+ Ew).

Proof. We shall prove this theorem first in the case of a sum of two
varinbles. Let x sssume numerically different values #y, 2, . . . Zm,
while numerically different values of ¥ are ¥4, ys, . . . y.. In regard to
the sum z + ¥ we can distinguish mn mutually exclusive cases; namely,
when ¢ assumes a definite value z; and y another definite value y;, whiles

and 7 range regpectively over numbers 1, 2,3, . . . mand 1,2, 8, . . &
If py denotes the probability of coexistence of the equalities )\’
e\
T= Y=y

%
¥ 4 oy ~.
< 3

we have by the extended definition of mathematical expeétatidn
\ ;

Blz+y) = 2; Ep,,(x, T
\

{=1f=1
or )
. m n : Jm n
ey E(x 4 3) = ; PN D
wwwdis %__-lhj,ary Ollélg

As the variable z assumes a. deﬁmte value &; in n mutuaily exclusive
ways (n&mely, when the valke 2 of & is acwmpamed by the values

Yu Yz - - - Ya O Y} 10 b5¢ OQ’\ubus that the sum
\ 2?’:3
.o\:,,.‘ j=1

represents thve\" ré)babilit-y p: of the equality z = z;.  Inasimilar manner
we see that*t\hc sum

."\'

’ m
\'\' v/ o 21 o
i=

represents the probability ¢; of the equality ¥ = y;. Therefore

m n nt #

T = i = Y.piti = E@),
£§1 3.:21?3'# €=21$ j%p? s=21 .
and similarly
2 Zparyf = 2 Spit = 29@% E(w);

i=lji=1 j=li=1 f=1
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that is, by (2)
E(z +y) = E(z) + E(y)

which proves the theorcm for the sum of two variables.

If we deal with the sum of three variables z -+ ¥ + 2, we may consider
it at first as the sum of z + 7 and 2 and, applying the foregoing result,
we get .

B+ y +2) = Bz 4 y) + E@);

Q"
and again, by substituting E(z) + E(y) for E(z + y), A
E(z+y+ 2 = E@@ + Bly) + E@. o))
In a similar way we may proceed farther and prove the §hé‘6’a‘em for the
sum of any number of variables. O

4, The theorem concerning mathematical expéb}ation of sums,
simple though it is, is of fundamental impurtance\qn account of its very .
gencral nature and will be used frequently. A€’present, we shall use it
in the solution of a few selected preblems. N\

-Problem@ What is the mathematidad expectation of the sum of
points on »n dice? ‘,j:’“

Solution. Denoting by . thappipMees 9f pgints on the ith die, the
sum of the points on n dice will bebs

s=xm1<{-"a:2+ RN i
and by the preceding thn(<r'\érrf
E(s) = @w) + Bl + + - + Ex).
But for every singl,e' Hie
.~~\'1.\"E(:ci) =1 i=1,2 ...mn;
therefore .Jx"’

n
, O Be =5
N Problem(® What is the mathematical expectation of the number of
suceesses in n trials with constant probability p?

Solution. Buppose that we attach to every trial a variable which
has the value 1in case of a success and the value 0 in case of {ailure. If
the variables attached to trisls 1,2, 3, . . . n are denoted by =1, 74, . . .
Zn, their sum

N\
N\

m=ao+xe+ -+,

obviously gives the number of successes in n trials, Therefore, the
required expectation is :

Em) = B(z) + E(@s) + - -+ + B(za).
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But forevery i =1,2,3, ... n
Ba) =p-1+0—p)0=p,

because ; may have values 1 and 0 with the probabilities pand 1l —p
which are the same as the probabilities-of a success or a failure in the ith
trial. Hence,

E(m) = np
or
B(m — np) =0, ~
which may also be written in the form ‘
»N
n . 2\ \“«
2 T,m(m — ﬂfp) = (}. ‘.,: N\

This result was obtained on page 116 in a totally .diﬁe\rent and more
complicated way. The new deduction is preferablgdn that it is more
clomentary and can easily be extended to more\\cbmphcated cases, as

e shall see in the next problem.

" Problem 3. Suppose that we have = serles ‘of # trials independent or
not, the probability of an event being py dmthe éth trial when nothing is
knomn abouf the results of other trisls. What is the mathematical
expectation of the number AR si.[?é't?éé}éi% Mg drials?

Solution. Again let us introduce the variable x; connected with
the 7th trial in such & way thabw; = 1 when the trial results in a suceess

and z; = 0 when it result@n’f&ﬂure Obviocusly,
‘,m-—'x1+32+ +$n

and
E{m) = B(x)) + Bz + -+ + E{z,).
But & S\t
’:§“ Blzd) =1+ 01 —pi) =p
and ther\efﬁre

N

\:" E(m)—‘p1+'pz+ +Pﬂ-

For instance, if we have 5 urns containing 1 white, 9 black 2 white,
8 black; 3 white, 7 black; 4 white, 6 black; 5 white, 5 black balls, and we
draw one hall out of every um, the mathematlcal expectation of the

number of white balls taken will be:

E(m) = & + 1% + % 1%+ = 15

tains ¢ white and b black balls, and ¢ balls are

Problem 4. An um con ion of the number of the .

drawn. What is the mathematical expectatt
white balls drawn?
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Solution. To every ball taken we attach a variable which has the
value 1 if the exiracted ball is white, and the value 0 otherwise. The
number of white balls drawn will then be

s=mtz:t "+ T

But the probability that the 7th ball removed will be white when nothing
a

is known of the other balls is gy ¥ therefore
a b ' a ~\
E(xi)_'a+b-1+a+b 0_a+b A\
for every ¢, and the required expectation is O
cu N
E = e——— /9
@ =55 @

Problem 5. An urn contains n tickets numbéxed from 1 to », and
m tickets are drawn at a time. What is the :r@thematica] expectation.
of the sum of numbeérs on the tickets drawn ¥ “

Solution. Suppose that m tickets draws’ from the urn are disposed
in a certain order, and a variable is a‘gfﬁabhed to every ticket cxpressing
its number. Denoting the va,_r'%{ble’ﬁ%ﬁiaach&dglm the ith tickel by =,

the sum of the numbers on ail . J*A:?‘:Ec S ;]%(parently 18

$ = T+ 0 0 T .
&
But when taken singly, %S’.ﬁriable x; may represent any of the numbers
1, 2, 3, ... n, the probability of its being equal to any one of these
numbers being 1/#,.,By the definition of mathematical expectation, we
have o\
O 1aa434 +
Sar — Tt n_ n+1
AlEE) . -2t

and thgfiafbre

\m‘: w Els) = ﬂ@_ét_ld)

For example, taking the French lottery where » = 90 and m = 5, we
find for the mathematical expectation of the sum of numbers on all 5
tickets

E(s) = 5—;3 = 297.5,

. Problem €. An urn contains  tickets numbered from 1 to n. These
tickets are drawn one by one, so that a certain number appears in the
first place, another number in the second place, and so en. We shall say
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that there is a ‘‘coincidence’” when the number on a ticket corresponds
o the place it occupies. For instance, there is a coincidence when the
first ticket has number 1 or the second ticket has number 2, ete. Find
the mathematical expectation of the number of ecoincidences. Also, find
the probability that there will be none, or one, or two, ete., coincidences.

Solution. Let x; denote a variable which has the value 1 if there is
coincidence in the #th place, otherwise #; = 0. The sum

s=mtot o+

gives the total number of coincidences and
A

E(s) = E(xy) + E@) + - - - + E(z.). p M

\
But A
Blw) =1== Xy
N
because the probability of drawing a ticket with the hifmber 4 in the ith
place without any regard to other tickets obviouslyds 1/a; therefore,
R

N\

E(s) = n ?1; -3
On the other hand, dena&ng.ﬂhﬁ‘mbajgi’iﬁw-gﬁ,e}mctly i coincidences by
pi, we have by definition N
B = py@2mat -+ b
and, comparing with the\p@céding result, we obtain
(3) Tk 2p 0 F P = 1.

Let us denote b ;(::z) the probability that in drawing n tickets, we ghall
have no coincidences. Tt is easy to express p; by means of ¢(n — 7).
In fact, we \lr_%ve exactly © colncidences in

m:,\'..:, Ci:n(ﬂ'—]-) P (n :,_?:_I_l)

Q - 1-2-3 - 3

mutually exclusive cases;

namely, when the tickets of one of the
G,
spocified groups of ¢ tickets have numbers corresponding to their places

while the remaining n — 4 tickets do not present_rfoincid_ent':es'at all.
By the thearem of compound prohability, the probability of ¢ coincidences

in ¢ specified places is
1 ‘e 1
" —1 n—i+1

Sl
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and the probability of the absence of eoincidences in the remaining n — §
placesis g(n — ). The probability of exactly 7 coincidences in ¢ specified
places 13 therefore

__pln —9) ’
nn—~1)---n—21+1)
and the total probability p; of exactly ¢ coincidences without specification
of places is

=1 - (n—id 1) oln — ) O
B 1-2:3 -4 n{n—1) -+ (n—1KY
or O
' eln—19) N
(4) S T O T : 4

-
The symbol «(0) has no meaning, but the préceding formula holds
good even for ¢ = »n if we assume ¢(0) = 1, )
Substituting expression (4) for p, into (3) 'wg reach the relation

oln — 1) + @(nﬂ 2) n qo(nm ’)-k C Gf@)l—ﬂ =1;

_ > 3
<N

or changing n into n + 1 www. dbmfuhbrary.org.in

0@+d” )+Mn_)+ N

rl
which gives successive]y\q\él), o(2), ¢(3), . . . by taking
oM n=1,23,
AN/
The general resultwhich can easily be verified, is
:"\:‘~ "
O —1)%
’n h Qa(n) = ( }G') »
O -
or, Im/An explicit form,
p(n) =1 — ! 11 ! ! (—1p

T3 T23t trmg.oTw
Even for moderate » this is very near to

1 1

c=1- +12 a5+ ¢ o adinf. = 0.36787944,

- N_[ATHE\[ATICAL ExproraTioNn oF A ProDUCT

b. For the product of two or more stochastic variables we do not
possess anything so general as the foregoing t{heorcm concerning the
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mathematical cxpectation of sums. An analogous theorem with respect
to the produet of stochastic variables ean be established only under
pertain restrictive conditions. .

Several stochastic variables are called “‘independent” if the proba-
hility for any one of them to assume a determinéd value does not depend
on the values agsumed by the remaining variables. For instance, if the
variables are the numbers of points on dice, they may be considered as
indepcndent, .

On the other hand, we have a case of dependent variables in numbess™
on tickets drawn in a lottery. For, in this case the fact that certaih
tickets have determined numbers precludes the possibility of any\'o}re\ of
these numbers appearing on other tickets drawn at the same time:

If more than two variables are independent according 0 the above
definition, it is elear that any two of them are indepe ¢at. But the
converse is not true: It is easy to imagine cases whef any two of the
variables are independent and yet they are not in%pendent when taken
in their totality. Therefore, when speaking of indépendence of variables,
we must always specify whether they are independent in their totality
or only in pairs.

For two independent variables we hg}vé“the following simple theorem:

Theorem. The mathematibFaaipaeieliorgoh the produc xy of two
independent variables x and y is equoh o the product of their expectations;
or, tn symbols ~

QW) = E@)E)

Proof. Let 1, %3, & . Tm be the complete set of values f_or x, and
Y1, Yo, . . . Yn theydiialogous set for y. Denoting the probability of
o being equal to #;b¥ ps and similarly, the probability of ¥ being equal
to ¥ by ¢, t%é\(énts

N r = x; and Yy =
k> ’. - * 2 -
are mdep\endent by definition of independence—because the probability
of x\tz}ng cqual to ; is not affected by the faet that ¥ bas assumed any

one of its possible values, and it remains pi. -
By the theorem of compound probability the simultaneous oceurrence

of the events
has the probability p.;. Aggin, by the extended definition of mathe-
matical expectation

E(ay) = % S.paaied

i=lj=1
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because the values of the product zy are determined by mn exhaustive
and mutually exclusive cases
T = Xy =4
i=12...m; 3=12 ...n
Now, performing the summation with respect to j first, while ¢ remains
constant, we have

" n
zpiflixi% = Pi%s Z\,q;y,— = paE(y), A\
i=1 i=1 R
and again <O
" m O
EGy) = Spad) = B@) I pa, )
=1 =1 ’\\
or o)

By) = B@F@).

This theorem can be extended to the c: &of several factors inde-
pendent in their tofality. For instance, if\3,Jy, 2 are indcpendent, it is
obvious that zy and 2 are also indepen(’le;rit,{ Hence

E&Md ;5@%%8 in
Ewyzpe BE@EWEE).

In a similar way we can::(zx\tend this theorem to any number of inde-
pendent factors, \

As an important application, let us consider two independent variables
# and ¥ with the respéctive expectations @ and 5. The variables z — ¢
and y — b bein"gx\';‘l‘..ndependent also, we have

ONE@ - o - b) = B@ - By - b);

and again

but N

»\}“\ Ex—a)=Elx) —a=qg—a=10;
therefore
(5) Bz — o)y ~ b) = 0.

7/_ ¥ DIgpeERsION AND STANDARD DEVIATION

6. Let x be a variable and o its mathematical expectation. The
expectation of

(z — a)?

is called “dispersion” of the variable, and the square root of dispersion
is usually called “standard deviation.” As

(x — a)? = 2 — gz + a2
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we can apply the theorem on the expeetation of sums to the right-hand
member of this identity and find

Elx — a)? = E(z?) — 2eE(z) + a® = E(z?) — a®
or, denoting by b the expectation of 27,
(6) E(z —a)2=0b—a

Thus, the computation of dispersion can be reduced to the computa_
tion of the expectation of the variable itself and its square. Also, denot-

ing by ¢ the standard deviation of z, we have the formula A
o

ot = b — ak O
For instance, if the variable is the number of points on g'ﬂi'é;; we have
I PRI CES E o Shve |
— 2) = 6 SN B
D
=5l — 8 = 2017, 5 1708,

and

DisPERSION O Sm\&s

f 7. It is important to bave 3,31%%%1? f 9§rpnula to find the dispersion
01 o sum

s = + 32 + S o
of several stochastic vanablt:s: The expectation of s is given by
E(s) = E(xl) + Blzs) + - -+ + Ez)

or ,‘\

\ E(s)—-a1+az+ © -+ Gy

denoting by «s}gﬁ‘he expectation of z;. The deviation of s from its expecta-
tion is, the.t'efore
\”‘”\ ot . @mtedt o tal)
and we have to find the expeetation of
(1ot - FT— Q=82 " — an)t

Now we have identically

(1 + 22 + ----%-:cn—az—az—---—aﬂ)”=2(x.--m)*+

i=1

+ 22(:\:.- - a)(z; — a;),
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the last sum being cxtended over all the different ¢combinations of sub-
soripts ¢ and j for which 4 5% j and consisting of n{n — 1)/2 terms.
The mathematical expectation of a sum being equal to the sum of the
expectations of its terms, we must find the expectations of the terms

(#; — a)? and (z: — a){z; — a;).

The first iz the dispersion of z; and ¢an be found from (6); namely,

E(z; — a)? = by — a} = o N\
if b; is the expectation of z? O\
As to N\
Efx: — a:))(z; — a;), AN\

<

instead of it we introduce the so-called “correlat-igr\ééeﬂﬁcient” of 2
and x; \Y;

R;’?- = E(xi _ a‘i)(:&'f — Si:’

Ty '\’
Denoting the required dispersion by B)ywe obtain
(7) D=ol4ei+ - +0%+ 2Brwow0: + 2R1ww0s + -+ +
www dbraulibrary .org.in 4 2R L a1

go that the dispersion of & sumt can be obtained as soon as we know the
dispersion of its terms and, 'tl}eu' correlation coefficients.

In an important ca \expressmn (7) for dispersion can be greatly
simplified. If the vartables @, zo, . . . 2, are independent in pairs, wo
gee from (5) that a.ll the correlation coefficients are = 0, so that in this
case sirply N>

(8) D_WQ@%+---+a%—m—ap+m—ah%-~-+m—

In other words, the dispersion of a sum of variables; any two of which
are mgig};endent iz equal to the sum of dispersions of its terms.

'8,/A few examples will serve to illustrate the use of these fornulas.

Problem 7. Find the dispersion of the number of succosses In series
of n independent trials with proba‘mhtlus P1, P2, - - - Pacorresponding to
first, second, . . . wnth trial,

Solution, As in Prob. 2 we assoeciate with every trial a variable which
assumes the value 1 or 0, according as the trial resulted in success ot
failure. These variables zi, 25, . . . %, are independent because the
trials are supposed to be independent. The number of successes

=mbat o o,

is thus the sum of thé independent variables. To find the dispersion of
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any one of these variables z; we notice that
E@)=1p:+ 0 ¢:=p
Bleh) =1-p:s+0-4i = pi;
therefore the dispersion of z; is

ol = pi — p} = Piths

and by (8)
ON
D=Em—pi—p— - —p) =ma + P2+ - - -+ patipy
In the Bernoullian ease of independent trials with the same prdB‘aB{lity
p,wehavepr=p2= * - =p.=pand O

%

7N
L 3

E(m — np)* = npq.
LY

This formula is equivalent to the relation

2 Tolm — np)? = npgy/
m=0 AN,

established on page 116.

Problem 8. In a lottery m tickgﬁsf’are drawn at & time out of =
tickets numbered from 1 to T F%l_]éi;‘t}ie dispersion of the sum. s of the
numbers on the tickets drawn. ra}} yrary-orgn

Solution. Let =z, 5 . & #. be the variables representing the
numbers on the first, secondg\." . mth tickets. By Prob. 5 we know that

. \\ n + 1’
£ ) 2

Eiz) =

and in a simﬂar:x@:}:ﬁre find
\&
7124wt (et D+ 1)
E@?} = = —

% 6
Whence}hia dispersion of ; is

Y ( n-l—l)2 n? —1
Bz — -T2

2

Sinee we deal in the present case with dependent variables, we must
find the correlation coefficients, or, which is the same,

1
E(.‘L'g — ﬂ;%:—l)(x;. - E-2i—)

for every pair of subseripts ¢ and j. The variable z; may have any of
the values 1, 2, 8, . . . n, with the same probability 1/a; and ; may
have any of the same values with the exception of that assumed by z:
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with the probability o i 7' 80 that the preceding expression consists of

terms .
alﬁ( _ej_lx _nt 1)
nln — D\ 2 g 2
where z; for given z; =1, 2, . . . n, ranges over all numbers 1, 2,
3, . . . n with the cxception of z;. As
" N
n+1
Se-#7) -0
£=1 A
it is obvious that K
a4 1\ _ n 4 1Y
E(x" 2 )" ”'(m‘ 2 ;’
and \
R
Coat Y a1 1 E( w_n+1)2:
E(x‘ 2 )(x 2 ) = it ) 2
A\ _ nt1l
WW W dbi‘éulibrary org.in B 12

Everything now is ready fof the application of (7). All simplifications
performed, we get the follew\lg expression of the required dispersion

\\
min? — 1) m— 1
\Q 12 ( n — 1)

If the Varlable&%\el‘e independent, the dispersion would be

\ min? — 1)
R\ \ 12

Th(‘rdeﬁendenee diminishes it, but the influence of dependence is not great
if t\lsge ‘ratio m/n is emall.

Problems for Solution

1. Find the mathernatical expectation M of the shsolute value of the discrepancy

m — np in a geries of n independent {rials with constant probability p. Ans. By
definition

M= éTﬂm—ﬂp[

m=l
where, as usual,
n!
T = ——————prge™,
“mln — m)!p 7
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ut since

n
2 Tw(m — np) =0,
m=10
we have also
“23) a0

wm=np

the sum being extended over all integers m which are >=p. Denoting by Fiz, ) the
SUm

e

2 AN

— T T & N3

Plz, ) = 3, Chamy A=

mng s W
we have N
2 aF (p, Q) O
Tn(m —ap) = p—fi;— — npF (paghs

mrERD

On the other hand, by Euler’s theorem on homogen\eé‘p\s'functions

or aR,J
nf{p, QJ P— + q_ﬁ
whence "1. :“
www.dbr ‘J}Bﬁ“ﬁ%}f' T g in
T - = Cl"l —1gn—H_
E Tw(m — np) 'Pq 3}3 ag =R oy ok
m R \

Here u represents an intege\d\gbermmed by
N p=<mwptl<p+l
The anawer is therefolg gwgn by the simple formula
( \\ M = 2npgClip* "
2. By a,pp%ag’ Stirling’s formula (Appendix 1, page 847) prove the following

result: o

.”\”' 2npq
\./ = 6l <1
,\”\ M - (1 + e) |8]

1 1
max. ﬂp—l,ng~1

.

where

i

c

1A

. and nis 8o large as to make ¢
Hivr:

1 1
Er) . o e (n)
log (M ) 2np — ) T oty — 07 24 np — 0 ng — 9

ot 1 31 e
Zﬂpq S S N, S
log |\ M: “Totmp =9 12(ng —5)  Almp — 9 Ang =)
D<ol #F9=1
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S
Z 3. What is the expectation of the number of failures preceding the first success in
an indefinite series of independent trials with the probability p?
e 2
Ans. 4+ 2% +3¢%p 4+ - - - = =2
e +2¢°p + 3¢ T—gi

4. Balls are taken one by one out of an urn containing ¢ white and b black balls
until the first whitc ball is drawn. What is the expectation of the nuriber of black
balls preceding the first white ball?

Ans. 1. By direct application of definition the following first expression for the
required expectation M is obtamed:

N\
_a b b — 1)
_a+b[a+b—-l+2(a+b—1)(a+b—‘2)+ R\
. (b - 1)(b — 2) O
P DE D @t | ]

Ans. 2. However, it is possible to find & simpler expression for M. "Denote by zi the
number of black balls preeeding the first white ball, by =, e stumber of black ballz
between the first and second white ball, and s¢ on; finally, by¢a: the number of black
balls following the last white ball, We have :’,\\'

#¥7
W

st xa - - +ma~+{:>b.
and L

B(z) + Elw) + - ak B@ers) = b.

But as the probability of every %ngmgﬁa@%@,mf every system of numbers
@1, Bz, . . . Toyr) is the same, namely, 9

T\ albl
\J e+ )
i} is easy to see that \\
EG@) = Blw) =« = Blzan) = M.
That is, \J
' ~0 la+ 1M =b
or A\
QO b
N M= .
7 N a+1

Equhtéﬁﬂg“ this to the preceding expression for M, an interesting identity can be
obtained, whose direct proof 1= left to the student.
8. In Prob. 6, page 168, to determine the probability ¢(n), we had an equation

olm) + eln — 1) | wln - 2) 0} _
1!

LT R

Find the general expression for ¢{a) usicg the method of generating functions. Ans.
Let

I} o0} =1

Fla) = o) + (Vs + (@)% 4+ - - -
be the generating function of ¢(n). Multiplying this rerics by

. T 3','2 z?.
R e e
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we find .
F@) =1tz batd o o=
1l —2
or
8—2
F(x}zl_ L
whence
11 (—1)n
"”(ﬂ’)_l'ﬂ"l"a_""" " A

8. The total number of balls in an urn is known, but the number of whi{é halls
depends on chance and only its mathematieal expectation is known. Findsthe prob-
ability of drawing a white ball. Ans. Let N be the total number of balls swd A the
expectation of the number of white balls. The required probability i€ 3/N.

7. Two urns contain, respectively, a white and b black and o &hite and 8 black
balls. A certain number ¢ (naturally not exceeding a + b) qfwb&Tls ig transferred
from the %lrst urn into the second. What is the probability\gf drawing a white ball
from the second urn after the transfers? Ans. The mquiy{é ’probability is

’

oa ”\‘.
P

hb_ O
at B el

8. An urn contains ¢ whitévawddbTARIIBAIY OUer & ball iz drawn, it is to be
returncd to the urn if it is white; but if Ltjié,black, it is to be replaced by & white ball
from another urn. What is the probahility of drawing a white ball after the foregoing
operation has been repeated z tirge'&f? Ans. Denote by M, the expectation cf the
number of white balls affer z op{&gﬁiuns. From the equation

N\ 1
\..’:Mzu = (1 ~a :i-_b)M» +1

the following expressignTor M can be derived:

W

O

z
&

al
\$

M.=a+0b-—-081 —1--
== a+b

AN
1t fo 6?@5 +that the required probability is

1 b 1 1 ®
P75 “atb
9. Urnz 1 and 2 contain, respeetively, o white and b black and ¢ white and d blaci
balls. One ball is taken from the first urn and transferred into the second, while
simyultanecusly one ball taken from the second urn is transferred into the first. What
is the probsbility of drawing a white ball from the first urn after such an exchange

has been tepeated z times?  Ans, Let M. and P represent the mathematical expeeta-
tions of the mumber of white balls in the first and second urn after x exchanges. Then

P M.
ce+d a+?b

Mx+1=Mz+ M3+P.\‘=a+c
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whence

*Tatb+c+d atbtetd\ Taexb crd

et at+b) ad — he (1 i 1 )z.

10. An urn containg pN white and ¢N black balls, the total number of hallg being
N. Balls are drawn one by one (withont being rcturned to the urn) until s certain
number n of balls is reached. What iz the dispersion of the number m of white balls
drawn? Ans. Lef z; = 1 if the ith hall drawn is white and 2 = 0 if it is black,
We have

Bz =p, Elm)=np, E@)=p O
and L\
Blas — )@ ~ ) = B@w) ~p* = —gtr OF
The required dispersion is N :( 3

N — n

N —-N
L, \“

11, In alottery containing n numhers (1, 2, 3, . ;’\"sn) m mymbers arc drawn at a

time. Lei %: represent the frequency of a speciﬁ(gd’:numher iin N drawings. Prove
that WV

D = Eim — np)t = npy

B(z:) = Np,  E(z3= Np)* = Npq
E(zs — Np) 2y Npbaulpiary-opin ¢ #4)
where NNy
_m A\ m—1
AN A I :
12, Let LA
N 2= (2 — Np)® — Npg.

%

N/’

Show that the dispersioh-of the sum

.»\x;.\"’ zl + z‘-’ + ot + zﬂ
is AN\
<\ :
R\ b o 2N — 1)( .
N —, =1 )
PN .
qudwatwn of the Proof. Lot N variables £, £, . . . £y be defined as follows:
& = —p if in the kth drawing the number 7 fails to appear

&, = ¢ if in the kth drawing the nwunber ¢ appears.

In a similar way, we can define & variables %1, 42, . . . 5y associated with the
number j = 7. Since

m—=Np=t+&t+ - 4 &
#r —Np=qm+a+ -+ +qn

I

we have
ehlm—NE) . guls;—Np) = guii bW, ghfotis . L L guby iy,
The variables
- g¥Ertvh, eebataty | gugyteny
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being independent, we have

E(eu{z;—i\'p}ﬁ(z,-—_vp)) = E(gu£|+wl) _E(eug,m,) oo Biestwtong),

Buy
E{g‘"{l*"’"l) = E(eu§,+vq.“} = o+ s = E(B“EN"’"”NJ = -
= pplem it - p(1 — plewwrr 4 p(l —pes™™ 4 (g —p +pplle™ " =
= Fu, v},
Hence
E{entzi—N¥ntolz;Ne)) = Flu, )X, A
It suffices to expand both members into power series in « and » and compare termis
involving u%?® to find AN
Blez); i, O

The rest does not present serious difficulties cxcept for somewhat comﬁli}fﬁ:bed caleula~

tions. (&
13. A box containg 2* tickets among which C} tickets bca’i’:}m number § (i =
0,1,2, ...x), A group of m tickets is drawn; denoling By s the sum of their
numbers, it is required to find the expectation E and the .(Qﬁp‘crsicn Dof s
1 L& 1 mim — Lin
Ans, B — —331?};1) =Jmn = T
14, A box contains k varieties of objects, the number of objects of each varicty
being the pame. These objects are drawn onddat a time and put back before the
next drawing. Denoting bww%bﬁﬁiﬂlb!&ﬁmﬂtg#mf drawings which produce
objects of all varieties, find E(n) and & (p“)

oo {14 Ll 22
(n o 2 3 " 'is.d}

. o _ ok N1 LAWY RS O L1
BE@m®) — En) =.7'€'.'1+§§+-"+k2 ; 2 p
N\ ’
" Use the result of Prqb\' 12, p. 41.
&
§~ References
A, VIARKOFF }‘Wahrsohemhchkmtsrechnung, pp. 45f., Leipzig, 1912.

G, GAammovo “Caleolo delle probabilitd,” vol. 1, pp. 3562, Bologna, 1925,
J Bﬁ'{i'BAND “(aleul des probabilités,” Paris, 1884

) 4



CHAPTER X

THE LAW OF LARGE NUMEERS

- 1. The devclopments of the preceding chapter, combined with a
simple lemma due to Tshebysheff, lead in a natural and easy way'to a
far reaching generalization of Bernouili’s theorem, known under the
‘name of the “law of large numbers.” O

.~ Tshebysheff’'s Lemma. Lef w be a variable which daes not assume
" negalive values, and a its mathematical expectation. The\probabthty af the
tnequality N\
% = at?

. w\,/
18 always greater than \\\
1 IIENG
-5 ¢
whalever L may be, &
Proof. Let wwwdb;@qhbrary.org.in
1&1, 1:&’2, ; . Uy

he all the possible values of fzhe varlable % and

\ PuPy - - e

thelr respective probabﬂlt,les By the definition of mathematieal expee-
tation, we have N

W

N
{1) ,§~v’ Pty + Patiz -+t 4 Pl = 4.

We may”s{r.ppose the notations so choscn that
AN .

.\ Y4
\‘3 Uy Uz, « v o U

are all the values of 4 which are =a#?, the remaining values
Uatly Uat2y « o - Un

being >at?. If all the terms in (1) with subseripts 1, 2, . . . o are
dropped, the left-hand members can only be diminished, since.these
terms are positive or at least nonnegative by hypothesis. We have,
therefore, :

PapiMarr + 0+ Pothn = @
But as
Wy > al?
182
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fori =ea-+1,0+2 ... nastil stronger inequality,
| @t (Pagr + * 0 - +pa) <a
or
1
Pyt + * * ¢ +Pn<t-5
will hold.

Here the left-hand member represents tho probability € of the
inequality

u > af? "N
AN
becauge this inequality can materialize only in the following’ .mutually
exclugive forms; either % = % ay1, OF ¥ = Uats, , . . OF WS %, whose
probabilities are, respectively, Pati, Pats, - + - Pnr Thug\‘
1 \
Q < E‘ﬁ, ,‘t\\"
- N

But if P is the probability of the opposite evend’

U = atzb ’.:’:‘

we must have wwwdbraulﬂ&féryorgin /
P +Q-
whence QO

¢ i

which proves the lemm&

- 8. Let zy, s, - mn “be a set of stochastic variables and ¢y, gz, . . . @a
thelr respective eipectatlons The dispersion of the sum
{\ 2y 4 22+ 0+ 2

whieh, ﬁ"sha.ll denote by B. is, by definition, the mathematmal expecta-
tion of he variable

it @ e —ar— o~ )t

Tshebysheft’s lemma, applied to this variable , shows that the proba-
bility of the inequality

($1+$g+ e s Ay — Gy — g — 7 '_an)z_—(_antg

is greater than
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But the preceding inequality is equivalent to two inequalitics

—tVBiZotat -t ge—a—ay— - —a, £ B,
or, dividing through by =,

_, /B:aé:_ta-%xg-i- o E G Gttt fa, (B,
Va? n n n?

Hence, the probability of these inequalities for an arbitrary positive ¢

is greater than p

1 Ko N
1 t2- NS °

Let ¢ be an arbitrary positive number. Defining t“bg?'%he equation

7

/B ~N
t. n—; =&

. whence ¢ \\“

we arrive at the following econclusion The probability P of the incqualities

e g mhmt RIS . 4,

7 . n =

equivalent to a single incgms;}ity

\
Z1 + 22+ :\- T2 atast - tael)
o’ n =
AN/
ig greater than N\
S B,
N 1~ e

Tha far nothing has been supposed about the behavior of B, for
inc%ﬁt;iﬁ’ely increasing ». We shall now suppose that the quotient
B./n* tends to 0 as n increases indcfinitely. Then, having chosen two
arbitrarily small positive numbers e and 4, a number ng can be found so
that the inequality

B,

e <7

will hold for #n > na. Consequently, we shall have
P>1—9y

for alln > no. This eonclusion leads to the following important theorem
due, in the main, to Tshebyshefi:
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The Law of Large Numbers. With the probability appreaching 1 or
ceriginty as near as we please, we may expect that the arithmetic mean of
values actually assumed by n stochastic variables will differ from the arithmetic
mean of their expeciations by less than any given number, however small,
provided the number of variables can be taken sufficiently large and provided
the condition

Bn

— =0 as n— ©
s fulfilled.

If, instead of variables x; we consider new variables z; = %' \a,
with their means = 0, the same theorem can be stated as follc)Wa '

For a fixed ¢ > 0, how ever small, the probability of the mequahty
Gt et e

@
% - \%

tends to 1 as a limit when » increases indefinitelyy; sprovided
=2 0. { NV

.n2

This theorem is very generaly, It ]}];.9 3)'%1- - independent or dependent
variables indifferently if the suﬂimeni: condition for its validity, namely,

that

74

B.

AN
——>i0‘ as 7> ®

is fulfilled.
- 8. This conditioh, \Whlch is recognized as sufficient, is at the same

time necessary, if 'tl]e variables 2, #, . . . 2, are uniformly bounded;
that is, if a ¢ nétant number (one independent of n), €, can be found
go that all pali.ﬁcular values of 2;{( = 1, 2, . . . n) are numerically less

than (. ‘%e‘ffP as before, denote the probability of the inequality
\m‘:" 2o + 22 + « - 0+ 2l = ne
Then the probability of the opposite inequality
ler + 22 + -+ ¢+ 2 > ne

will be 1 — P.
Now, by definition,

B,=Ez+a+ - 42t
whence one ean casily derive the inequality

B, < n20*1 — P) 4 n%P
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from which it follows that

% <1 —P)+ &P < & + €1 — P).

If the law of large numbers holds, 1 — P converges to 0 when 5
increases indefinitely, so that the right-hand member for sufficiently
large 7 becomes less than any given number, and that implies

B A~

T
L0
nl ’

which proves the statement. PR D

" 4. There is an important case in which the law of \Iarge numbers
certainly holds; namely, when variables 2, 25, . . . zare independent
and the expectations of their squares are bounded, “Then a constant

number ' exists such that \
b= E@) <C  for =133, . ...
On the other hand, for independent wariables

i3 : L o
By = 3,(b: — al b < nC
Wy ,db;r}c-f uhb rarysdrg.in
% <{f—; 0 as n—r o0,

The cxpectations_ofgquares are bounded, for instance, when all the
variables are uniformly bounded, which is true, for instance, for ‘fiden-
tical” or “equal’, wariables. Variables are said to be identical if they
possess the same set of values with the same corresponding probabilities.

5. E. C.Ql})er made a complete investigation of the results of 2,854
drawings ifina lottery operated in Prague between 1754 and 1886, It
consisted el 90 numbers, of which 5 were taken in each drawing. From
Czubér’s book “Wahrscheinlichkeitsrechnung,” vol. 1, p. 141 (2d ed,
1908), we reprint the table shown on page 187.

With the 2,854 drawings, we associate 2,854 variables, 1, 23, . . . Zosst
" representing the sum of five numbers appearing in cach of the 2,854
drawings. These variables are identical and independent with the
common mathematical expectation 227.5. Hence, by the law of large
numbers, we can expect that the arithmetic mean of actually observed
values of these variables will not notably differ from 227.5. To form
the sum :

and

~

2854

8§ = Ew,-
i=1



SR, 5] THE LAW OF LARGE NUMBERS 187

Numbers Their frequency Difference
m m — 138
6 138 —20
39, 65 139 —19
16, 41, 76, 87 142 —i6
2! 14! 56) 79: 86 143 _15
18, 44, 47 144 11
72,80 145 _13
12 146 —12 QA
21, 53 , 147 i1 O
I 148 -9 ¢\
24, 32, 55, 69 150 -8 o)
27, 64, 75 151 _ A
81 152 — 6 0
23, 29, 85 153 — 5 ,\\
19, 35, 42, 74 154 - '4";}
7, 20, 59 155 N3
13, 34, 40, 67, 88 156 N >o
11, 52, 68 157 RAZE!
17, 82 158 \® 0
15, 90 1 R 1
58 160 %% g
22’ 2% Www'dbr%ﬁi@ffﬁé" y.prg.in i
33, 57 R 5
581 A 164 6
3, 43, 45, 48 N\ 165 7
10, 26, 66 b\ 166 8
1, 5, 60, 8 187 9
50, 62 o~ 168 10
9, 61, 63\ 170 12
54,73 {7 171 13
49,71, 78 172 14
287\ ’ 173 15
a7 176 18
130, 46 177 19
QT | 178 20
31 179 21
38 184 26
4 185 a7
77 188 28
83 189 31

we must multiply the frequencies given in the preceding table by the
sum of corresponding numbers. To simplify the task we notice that all
numbers from 1 to 90, actually appeared. Hence, we multiply the
sum of these numbers, 4,095, by 158, which gives:

4095 - 158 = 647,010,
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and then add to this number the sum of the differences m — 158 multi-
plied by the sum of the numbers in the same linc. The results are:

Bum of poesitive produets Bum of negative products
22,336 —19,587.
Henece
S = 647,010 + 22,336 — 19,587 = 649,759
and
5 p
a5 = 22767, N

N

which differs very little from the expected value 227.5. An\'n\\?e?n larger
difference would be in perfect agreement with the law of\l#1ge numbers
since 2,854, the number of variables, is not very great.& )

6. The two experiments reported in this section, were made by the
author in spare moments. In the first experithént 64 tickets bearing
numbers &, 1, 2, 3, 4, 5, ¢ and occurring in t-h.eggsllowing proportions:

"\ i .
Number........................ 0 1.,‘.‘2 3 4 | 5 i

N6 | 5 |20 | 15| 6 | 1
WWW.UDI.:II_I:]"“J[ Ary TR
were vigerously agitated in a tin fq}a,n and then 10 tickets werc drawn at a
time and their numbers addéd.  Altogether 2,500 such drawings were
made and their results'ica)efully recorded. From these records we
derive Tables I and PR\

Frequency...................... 1 &

Taswe T
N ;
Number Fr;@qeuc}' obszerved | Expected frequency Discrepancy
— o —
0 N~ 404 390 .625 +13.375
IR\ 2,321 2,343 .75 —22 .75
A 5,850 5,859.575 — 9.375
~&) 7.863 7,812.5 +50.5
N4 5,821 5,859 .375 —~38.375
5 2,344 2,843 75 + 0.25
6 397 390.625 + 6.375

The next table gives the absolute values of differences s — 30 where s
is the sum of the numbers on 10 tickcts drawn at one time, and their
respective frequencics,

From Table I it is easy to find that the arithmetic mean of all 2,500
sums observed is:

74996

2500 — 28.9984
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Tarre 11
s — 30| Frequency observed |s — 30] Frequeney ohserved

0 246 7 71l
1 549 8 44
2 479 9 25
3 a9 i0 8
4 324 11 4
5 241 12 1
6 129

N

whereas the expectation of cach of the 2,500 identical variablgza{ ﬁn?im
¢onsideration by Prob. 13, page 181, is 30. By the same problém the
dispersion of s, that is, E(s — 30)? is 12.857. On the othef hind, from

Table IT we find that m'\'\'
Z(s — 30) = 31477 \%
and : ) \\
Z(s — 30)* _ \
—BE00 12.5?@:

fairly close to 12.857. ' RN

Tn the second experiment-abiriehitespyasducs, cards of every suit in »
drawings (r being the smallest nuniber required) of one card at a time,
each card taken being returned before the next drawing. By Proh. 14,
page 181, we find that the cxpestation and the dispersion of this number
n are, respectively, 834 @ 14.44. Altogether 3,000 values of n were
recorded, of which 33 wasthe largest. Values of the difference n — 8 are

given in Table IIL. o &7

N Tagre 111
."\" |
n—28 ?m;\qiﬁcncy n—38 Frequency n—28 Freguency
—4 Y oge 6 77 16 3
3\ 420 7 50 17 5
4—\2 426 3 40 1% 2
-1 407 9 31 19 1
0 348 10 17 20 3
1 247 11 15 21 1
2 228 12 13 22 1
3 156 13 6 23 1
4 116 14 9 24 ¢
5 88 .15 6 25 1

From this table we find
Z{n — 8) = 965, 2(n — 8)% = 43,395,
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whenhee

Z(n - 8%)'2. = E(n — 8)2 _ ’2(?’3 - 8) + _3_,°Q_Q = 43,085

Zn = 24,965.
By the law of large numbers we may expect that the quotients
Zn : Z(n — 83)*
000 0 3000

will not considerably differ from 814 and 14.44, respectively. s a
matier of fact,

. O\
n I(n — 83)* _ N\
2500 8322, —gaon = 14.362. |\

There iz a very satigfactory agrcement between the theor) and this
experiment in another respect. Of 24,065 cards dm%*n there were

6,304 heurts A
6,236 diamonds /)
6,131 elubs

6,204 spadcs

X )

whereas the expected number for eaglh Slllt 15 6241.25,

7. 8o far, we have do a}\tmhhﬁz{m.@ sugiables having only a finite
number of values. Howover, the notion of mathematical expectation,
and the propositions esqentmlly based on thig notion, can he extended to
variables with infinitely {m\any values. Here we shall consider the
simplest ease of variables with a countable set of values, thut can be
arranged in a sequence

':‘.\<a_z<a_1<au<a1<az< e
in the order Qf\'f[%eir magnitude.
With !;hié\t’:'equence is associated the scquence of probabilities

al

AN N <s ey P2y D1y Py PLy Py - -
sodhet’in general p; is the probability for z to assume the value i
Thede probabilities are subject to the condition that the series
Zpi= -+ patpatotpFpt o
must be convergent with the sum 1.
The definition of mathematical expectation is essentially the same
as that for variables with a finite number of values, but instead of a
finite sum, we have an infinite series
E(z) = Zpwa;

provided this series is convergent (it is absolutely convergent, if con-
vergent at all), If this series is divergent, it is meaningless to speak of
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the mathematical expectation of . Likewise, the mathematical expec-
tation of any function ¢(z} is defined as being the sum of the series

Ele(x)} = Zpig(e),

provided the latter is convergent.

It can easily be seen that various theorems established in Chap, 1X,
as well ag Tshebysheff’s lemma, continue to hold when the various mathe-
matical expeetations involved exist.

The law of large numbers follows, as a simple corellary, from Tsheby-
sheff’s lemma if the following requirements are fulfilled: .

a Mathematical expeetations of all vamables xl, Xy, T3, . . & ‘exXist.

A, The dispersion B, of thesum =, + 22 + -+ = 4+ 2, emsts ’

v( The quotient B,/n? tends to 0 as n tends to infinity. /4 =, RO o

The first requirement is absolutely indispensable. W‘lthout it the
theorem itself cannot be stated. The seecond reqmremeht (not to speak
of the third) nced not be fulfilled; and still the law of\lafge numbers may
hold, as Markoff pointed out. INY

8. Let 21, %1, %s, . . . be mdependent Vsmables If for every ¢
the mathematical expectatlon

E(x?)

“www . dbrau 11:»1‘31 y org.in
exists, the quantity B, exists also. . But if at least one of these expecta-
iiong does not exist, the quantlj;y B has no meaning. However, the

following theorem, due to Magkoff, holds:
Theorem. The law o @wbe numbers holds, provided that for some

5 > 0 all the mathematical expectations
E(I£i|1+a); 1= 1; 2! 3!
exist and are bom{d}d

Proof. \the sake of simplicity we may assume that
,\.f;’z Blz)=0; =123,
For,{ﬁi;ﬁésing
EBz)=a:; +1=123,...
instead of z:;, we may consider new variables
2; = T — G

Then
E(Zg) = {

and it remains to prove the existence and boundedness of

E(]Zil“"'a); o t= 1: 2: 3)

o

—_—
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The proof follows immediately from the inequalities

los — ag'* £ 20|z |1t + fa'+e}
[ag " < E(|z|1+9)

the first o_f which is well known; the second is a particular case of Lia-
pounoff’s inequality, established in Chap. XIII1, page 265.
Thus, from the cutset we are entitled to assume that

E(z.) = 0.

The proof of the theorem is based on a very ingenious and 'ugeful
device due to Markoff. Let V be a positive number which laier We shall
increase indefinitely. Together with z; we shall consider tWOyew varia-
bles, u; and #;, defined as follows: @ being a particular, x.%lu(, of x, the
corresponding values of u: and #; are 7o\

u; = a, Py = \;
if la] £ N and N
U = 0, i =s§ &

if fa| > N. Thus, stochastic variables #;'8hd v, are completely defined.

[“vidently R\
dbrauliBrary.org.in
‘f‘iwu;jjvw yorg
whence

0.5 B + E@)
and \\
O B:i= E(u) = —E(v).
Now P\%
T Bl S B(lsdv) <
by hypothe‘%.w Since v; is either 0 or its absolute value is >N, we have

A NeE([n]) = E(joi %) < ¢,

(2 | B = 1E@ < 55

Likewise, the probability ¢: for v; 5 0 satisfies the inequality
N, < B(of) <o,

whenece

c
(3) < FFE
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Now, let us consider two inequalities

Uyt U+ 0 F U

e

et @+ 0+
n

€Y <7

(5) < T

where ¢ is an arbitrary positive number and let Py and P be their respec-
tive probabilitics. The inequalities {4) and (5) eoincide when

M= = =y, =0 O
With this supplementary condition they have the same probabrhty* Q.
But they can hold also when at least one of the numbers . QO

oy
.

By, e, . . . Ua N\
is different from 0. Let the probabilities of (4) and\{B) under such
circumstances be By and E.  Then

Pa=Q+Ry, P=Q+R”
But evidently neither Ry nor E can exceed th@\ probability that in the
series « \J

WOWW (!lbréuhb,l ary org.in
at least one number is different from 0 ‘this probability in turn does not

exceed (see Chap. II, page 30)

g1 + q{ﬁ*\ e < Nil—f;
Hence \
ne
:‘\R0<N1+5} R(W
and \\
N
(6) ’:.\\ iP PDi < N1+5
Omthe other hand, since none of the values of u:(7 = 1, 2, . n)

exee\ie N, we have
E(u2) £ N B(|u ') £ N'E (|14 < N
Accordingly, the dispersion of the sum %y + us + - - - + . will be

less than
cnlN1—8,

Hence, by what has been proved in Sec, 2, the probability of the ine-
quality

IIA
[0 N

(7) [ul+u2+"'+un_’.81-l-_|82+"‘+ﬁnl
I n n |
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is greater than
4eN¥ 2

e2n

1—

But whenever {7) is satisfied, the inequality

AU b o Ul € 1B1+ Bt - - -+ Bl
®) 7 =2 + 7
is also satisfied. Hence, the probability of this inequality is a fortior
greater than . N\
U O
pr AN\

« N

Owing to inequalitics (2), the following inequality follo@‘s"@rom (8):
Iul+u2+ Tt +un

l

<3+

I n o o
Hence AN
4cN 1% O
Py > - -_‘_'—?"?‘b'\,
and on account of (6) A Y '
WWW dbrzu%vtn ary.or g m
P> L o - yw

Now we ean dispose Qﬁ‘g}e arbitrary number N by faking

\\‘,

ne
¥N=3
Then P\
‘\w o\ 1+
\ ) P>1-—- 2 - ns,

Np\w N tends to infinity with n and as soon as » surpasses a certain
lin\nt s, the fraction

C

N

will become and remain less than ¢/2. The probability of the inequality
|x1+xs+ o 4o

n

< &

for n > ny will be greater than P and consequently greater than

144
1~ 26@) -,
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It tends, therefore, to 1 as n tends to infinity, and that proves Markoff’s
theorem.
Example. Let the possible values of the variable zg(p =1,2,3, ... )be
e+ DEp e+ DL p e + 1, L
with the corresponding probabilities

r P b o
p+1 (p+1)7 (p+ 1) ) N\
Bince the sertes N
1,1 1 ' ne.Y
e e G T '.\\.
»p p P e
is divergent, the mathematical expectation R "}‘:
E(z}) \V
does not cxist. Yet the law of large numbers holds. For g
oo 3‘\\‘:
wd\

E(jai+8) = p0 50—
(NY F1-8
nml Q" + 1)2
is a convergent series for anyMELﬁulihgﬁiqy“eofgrjn

@ L O
>

o 1
P_a N\ ﬂ(]_ — 5 é _1_—_§
a1 22 —1

and cornsequently the cond@t&%}s of Markoff’s theorem are satisfied for any 0 < § < 1.
Hence, the law of large numbers holds in this example.

9. If variables x;, "2, %s, . . . are identical, the law of large numbers
holds without adg’other restrictions, exeept that for these variables mathe-
matical expgetations exist. In faet, Khintchine proved the following
theorems\

Theorem. If, as we may naturally suppose, E(x) = 0, the probability

NN .
of tQa Smequality -
2 W . o2

= &
n

lends to 1 as n increases indefintiely.
Proof. The proof is quite similar to that of Markoff’s theorem and

is based on the same ingenious artifice. Let
e s Car <oy < g <
_ be different values of any one of the identical variables z, 25, @5, . . . and

<y P2y Pe1y Doy P1y P2y - -
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their probabilities. By hypothesis
Zpias

is a convergent series with the sum 0. The series
Zpiles

is also convergent; let ¢ > 0 be its sum.
Keeping the same notations as before, we have

84 < E(ed) = 3, plai = $(V) Q
jei] = N ¢ ~\,
where () is a decreasing function tending to 0 as N — e ‘Also

BE(#) < NEjw] = eN O

so that the dispersion of the sum "

Ny

(N e e 2N
1 2 x’;l\{"

LC
eNn &)

Consequently the probahility of t-hg»igeauality
www.dbraulibrary.org.in

is less than

() u1+u2+n"'+?ﬁg:::}91+132+n“'+}9né§€
. \
is greater than O
\\ 1 4eN
4 5 S - 4 N
» \/ e

On the otherBand, the probability g, of the inequality v, 2 0 is less

than O

Q& o)
o N
l;@nuge
N 2 i < ¢(N)
jedf =N
and
G: = 2 yirs
jad] =N

Hence, the difference between the probability of the inequality

'M]_""uz—!“ tot +Un
e

<0
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and that of the inequality
frt+z+ - -+

| n <o

is numoerically less than
my(N)
N

As in the preceding section we conclude that the probability ofthe
inequality

e . T R o, IR Wl
—_— = o T ~ -
" sz Tvm o
is greater than : N
&n v

Finally, the probahbility of the inequality \\J
_|_

e 2 i S ?\
| 5+ v

(10) P,

is greater than

www.d bl%bﬁ‘;u}g lﬁ(ﬁr}ﬂ
1~~~

To dispose of N we obgg@é that the ratio

K Ve
~ N

ig a decreasing fun(’ti?ﬁ)}; of N and tends to 0 as N — =. Hence, at least
for large n, th{,,rc;efdsts an intf'ger N such that

\« \/— w«(N -1

€N -1

Th,e\

whenee it follows that the probability of inequality (10) is greater than
e N -
1 - —‘/EE[WLN) + VI - 1)]-

Now N increases indefinitely together with n; therefore, for all n
above a certain limit n,,

V) <5
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%0 that for = > ne the probability of the inequality

w1+zg+n° il ot I

will be greater than

[w}(T SRRy )]

and with indefinitely increasing » will approach the hmit 1. Tbus
Khintchine's theorem is completely proved. O\
Exzample. Let ) \ ’

2120l 22—210;2’ 23—-21.;;31 L. 2,,_Elo¢n, R £
be all possible values of identical variables 21, 23 22 . . . and { &

111 1
&

their corresponding probabilities. Since the serieg ‘,\

L1 5 1 RO

Foloat + 9sloze + Dtlozs oo 2 ooh T Gt T

W dbra'u}.lbl ary.org.in

is convergent, mathematical expectatmn,s “of the variables i, xs, x5 . . . Cxist.
Heunce, the law of large pumbers hiolds it this case.

Markoff’s theorem eannot be a]{phed here, because for any positve 4 the series

\\ 903
Eﬂtﬁému

i 1

xt\.u
2\

is divergent,

Problems for Solution

. 1 Let be§st.ochastlc variable with the mean = 0 and the standard devistion &
Denotmg By AP(t) the probability of the inequality

T =t
-sho}\ﬂ:{at
Py < -2
Uta’-{-t’ for t <0
1-P@)y = ’:—i‘ for t >0

Show also that the right-hand members cannot be replaced by smaller numbers.
Indication of the Proof. Bince

Zpsxi =0,  Zput = of
we have also

Zpi{ay — 1) = —f, Zpifes — )3 = o 2
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whence, supposing that z¢ > $#fori = 1,2, . . . s and first taking ¢ negative,
2
A= 32;0.—(3; - ﬂ% Z;m Ep.(x- -0 £ {1 - PN+
i=1 ;-1 i=
- = —-—- = .
1-PO 2oy PO

Tar positive £ the proof is quite similar. Considering a stochastic variable with

two valucs: "
- O\
ot
my = = — \
T M Tana e,
o2 & e
Ty == Pe= \ v
1 N N

one can easily prove the last part of our statement. >
2. Tshebyshefi’s Problem.! If x is a positive stochastic varmb’k}wlth given

B@) =, B =7

then the probahility P of the inequality R \ >
zzv AN
bas the following precise upper bounds: Q \/
vf’wﬁ abl‘aéﬁbra ry 61-% m

P<— f0£‘~ zr‘ﬁy{-—
1

P

ps___u_.;e“}‘L for ',._2_1_.

=t ,u\sz?’— PR ot
Indication of the Proof Lgt
' \ ) oty — 1-‘
'\” £= y — ot
Then ¢ < pif» w’/cri and

\%\ T — Ey\!?
P E( )

\’” — ¢

since \\

it Y
v—i
for z = ». On the other hand,

T — £\ -4 4 — gt
E(o—e)" -8 e — 2%

whenee
ot — ot

Pgr‘—i—v“ - 0%

' Bur les va,leuﬁ limites des integrales, Jour. Liouwille, Ber. 2, T. XIX, 1874,
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The equality sign is reached for the stochastic variable with two values:

(0 — o?)?
r =i pl-—'r"-l—v”-%’v

P
non m

If o* £ ¢ < /o we have an obvious inequality .

= a?
P é E(-—) = ;» ‘..\

To show that the right-hand member eannot he replaced by a smaller num.b‘er COn-

sider the following stochastic variable with threc values: 4 }

(1 —o2e — lo® 1t N

3:1 = 0’ p}_ - ‘“‘“

iy '\g.

ot — 4 X J

Zy =0

2T BTy O

74— ol N

Tz = 1, Pz = m \s

where [ > v is an arbifrary number. For tlus~ vm{a,ble ’

W dbrau};h’t ATy O B
B w“?— v

is arbitrarily near to o2/v for sui’ﬁcrqntly large L.
N 8. If 2 is an arbitrary stochaslic variable with given

{x?) = a2, E(zt) =+
and P denotes the pmbabii{ty of the Incquality

x\ ”; !ml = ;w‘)
then “\~

‘,l

£t >
(T) + ke — 2 _
a .

These mequalities cannot be improved.

_ Hiwt: Foliows from Tshebysheff’s problem.

< 4. Let z; assame two values, { and —3 with equal probabilities. Show that the
law of large numbers cannot be applied to variables 2y, 2, z,, . . . .

- B. Variables oy, =4, 23, . . . each assume two values:
loge or —logo; Tog (@ +1) or —logla-1); logla +2) or —log (e 4+ 2); -
w;::s equal probabilities. Show that the Iaw of large numbers holds for these vari-
al
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Hme: Ble) =0;1=1,2,3, ...
By=B@ + 2+ -+ )t =
—1
=2 flog (s + 9}~ (@ + 5 — Dilog (a +n — 1)}2
$=0
as can easily be established by using Euler's summation formula (Appendix 1, page
347). Hence

B "
Z 0 ag n— ®. O
n? ‘

g i x4 can have only two values with equal pmb&blhtles ieand —ie, show\that the

Inw of large numbers can be applied to 2y, 22, 24, . . . if & < 15. s M
Hine: N
\ ¢ /
see+1 B, { &/
Bn=1m—|—22“+---+n‘“~ﬂ b2 L0 a<s
20+ 1 n? v’

It can be shown that the law of large numbers does not h&hidf a z L4

7. In an indefinite Bernoullian series of trials mt]\the constant probability p,
let m¢ denote the number of suceesses in the first ¢ tmals_ Show that the law of large
numhers holds for variables . \J

Wwdﬁrauhm arly Ql g m
TR ?«,

i

if @ > 1s.
Hixr: Evidently E(z:) = 0, E(;:iq (5pg)1 % and

\

&
B D Gpeyte + 23 Bam).

N i=1 FEa)
Now x\...‘
Eze)) = ()0 ®Elm: — ip)? + @) *(po) B { (m; — ip)om, —mi— (F=)p)} =
('pq}l A

sinee my .—u\*ip and m; — mi — (j — ©)p are independent variables, Thus
- \Y4

™ B. = (m)m[z,w + 23 |

imi

and it is easy to show that

— —{) a8 n-—r 0

provided « > 14, DBut the law of large numbers no longer holds if « £ }5. The

proof of this is more diffieult. o
8. The foliowing extension of Tshehysheff’s lemma was indicated by Kolmogorofi.

Let &, %z . . . %a be independent variables; E@) =0, E(x) = by
Bo=bitbat - Fbu
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and

=zt 4o k=12 ...n
Denoting by P the probability of the inequality
(4) max, (8%, 53, . . . 53 > B,

we shall have P < 1/1%, .
Indication of the Proof. The inequality (4) can materialize if and only if one of
the following mutually exclusive events oceurs:

event e;: st > B2

event e;: s 5 B, s} > B, e
event ;i 8} < B.i? 5; < Baty 55 > But?; N\
............................................................ B I I I,

event e,: s? = B2, si % Buth - - - 52, € Batt; 82> B2, ‘:.‘;'

If (&) represents the probability of e;(s = L2 ..,.8 th%;“
P (o) + (e + - - + (oo

Now consider the conditional mathematieal expegt@iﬁn E(s¥er) of 52 given that
ex has occurred,  Since the indieation of ex does not affdet variables #; .1, zaye, . . . Zn,
these variables and s; are indopendent. Hence )

BE(siler) = Eisfies) + o\ k™ + - + ba > But2,

On the other hand wiww.dhb p;tﬂt;’l:irary,org‘in
B = BE) = 3 eaBples) > Bati(e) + (o) + - - - + (o)
=1 N
ne

whenee P < 1/12,

k™

.9' The Strong Law of Lr}ge Numbers (Kolmogoroff). Using the same notations

a8 in the preceding probldm) show that the probability of the simultaneous inequalities
[N

R
.%"é
PN n+1 42

will he greatfzibh'&n 1 — 4, provided = exceeds s certain limit, depending on the choice
of ¢ and 4, and granted the convergence of the Beries

N\ =
ws\' w4 bﬂ
Q w
1
Indication of the Proof. Consider variahles

Sa41

€ = E

=g ..,

Em ™ 8y,
Ti = max. b

forw=2ngm<om iz1,93, .

»

and denote by ¢; the probability of the inequality +; > I,

lormma By Kolmogoroff’s

& < 23i-2p2.a
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and
j=2n—1 w [=2n— lb
o tg g+ o <4s"2ﬁ 2 by <lﬁe‘=2 z b
[=Di1in i=1 l=2i"In
or

z B
grt+ ottt <16€'22}£—

Hence, the probability of fulfillment of alt the inequalities = = Y i =1, 2,8, . .24\
ig greater than

£

= 3 )y
- E 7 “
1 — 16¢ 22 ™ . \“\'
E=n N

The imequalities lss/kl €Sk =nn+hn+2 ... 818 satisﬁeii ywhen simul-
taneously N\

nEd =123, ’
and .=t\\J

.-} %& x\ &

The probability of the last 1%3;%1%““ ge%tegr%hfg 1- _-. the probability
of simultaneous inequalities . 3,

sl I "ﬁ}\"é\ﬂ,ﬂ-i-l,ﬂ-’rz,..-

& fortiori will be greater tha.q \\
b 4Ba
O 118 2 —

‘:\ k=n
This mequahtyﬁ\ntﬁces to complete the proof if we notice that Ba/n® tends to 0 when
the scries

.\" o by
O A

is eonvergent.

10. Let z, o, . z, be identical stochastic varigbles and B(x) = 0. Denoting
by P ae] and Pale) respectwely, the prohshilities of the inequalities
$1+xz+"'+$n}é and $1+$z+"-+%<_e
n n
show that
lim = P"(E) =0or +®
= uP”(e)

_according as E{z}) > or <0
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For the proof see Khintehine's paper in Mathematische Annalen (vol. 101, Pp. 381
385).
' )11. The Law of the Repented Logarithm (Khinichine, Kolmogoroff). Let T1, T,
+ #» be bounded independent variables, E{z:) = 0,{ =1,2, . . . nand B, — «
asnn— «, For an arbitrarily small & > 0 and ¢ > 0 and for an arbitrarily large &
osne can choose fy > N 50 that:
@. The probability of the fulfillment of the inequality

sa] > (1 + 8}+/2B, log log B,

" for at least one n = n, is less than e Q)
b. The prohability of the fulfillment of the inequality \
" ¢\
[sel > (1 — 8}+/2B, log log B, ‘ O
for at least one n = n; is greater than 1 —~ N

For the proof see Kolmogorof's paper in Mathematische Anw (vol. 101, pp. 126~
135). . Q

If 2, 3, . . . % are variables independent in pair"ssqrgd B, the dispersion of their

sum s =1 + 22+ - - - 4 %, then the probabilit(f?\:hat
sl = t+/Ba\™
satisfies the inequality R\
www.dbrwj&ibl'fry.OI'g.in
f{ ‘>‘ 1 — p (Tshebysheff’s inequality)
provided B{z;) = 0,7 = 1,2, ., , ’.~"n, which can be assumed without loss of generality,

In ease variables are totally in'c{épéldent and are subject to certain limitations of com-
paratively rild character, S\Béi:nst{:in bas shown that Tshebysheft's inequality can be
considerably improved, M\

12. Tet @, 0r, . . @aebe totally independent variables, We suppose Bz} = 0,
E@h =biand WY '

. b;
)" Ble|t) = —hich-
AL (|¢|)_2h0"
O
fori =122" .. nand b > 2, ¢ being a certain sonstant. Show that
A
" \Y; Buet

\ ) 4 = E{gmtet-du)l o 2 —a)

where s ig an arbitrary positive number <l and ¢is g positive number so small that
&« = o,

Indication of the Proof, We have

SRR -l
n=32

whence

b . bu?
Ble) 21 + 3¢ 2 () < FA—03,

=0
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13. If Q denotes the probability of the inequality

Bae 2

i T T v
2(1 —o) &

show that & < et .

Tndication of the Proof. H J is the probability of the inequality

gl taat o Fiy) Ae‘g,

then, by Tshehysheff’s lemma, 0 < e and Q < T by Prob. 12.
14. S. Bernstein’s Ineguality. Denoting by P the probability of the inequality

l2s 4+ 22+ - -0+ 2o, QO
w being a given pusitive number, show that ,{ o N
B ot ¢ ,\ "
P =1l — 2 2Bst2cm % D
Bae N0 =)

2 ) $ 4
Indication of the Proof. Tomake -+ E_ F minimum take &=

2(1—ea) = N

VB

2B, R . \
then F = 5\/ 1 and { is determined by equating F fo q.\\'The resulting value of ¢,
-

e:-i(l_ﬂl ::..'Q.
www.dbrgdliblzaf)korg,jn
L ¢ ® w

B, + cw

t9 admissibic only if e¢ = ¢ 07 g’—(l — a],'s‘;.v The hest choice for cise =

~ 4

and correspondingly { = — 2 %, By Prob. 13 the probability of the inequality
V' 2Bs K 20t
‘ml\}_ﬁg-]" PRSI S e ]
ot O

iz less than e—ﬂ’""'%‘", N\ ﬁ‘ﬁe game is truc of the probability of the inequality

7y - 2 +\'\"+ Tn < or gy — g — ot TEn PG
15. 1t variabids "5;1, Ty - . - Lo ATE uniformly bounded and M is an upper bound
of their ﬂunwﬁ(}a.l values, then we may take ¢ = M /3.
Indicapiam of the Proof. Note that
o\ ¥/

\ i . b M e
E(lzl) S MY b, bMMEE EM =)

16. Clonsider a Poisson’s series of trials with probabilitics £y, Py -+ - Pr for an
'P1+P2_+ v +?3»’

avent E to veeur.  Let m be the frequency of Einn trials, p =

n
1 - : - =
M= Z(pigr - pagz + - -+ Peln)- Show that the probability P of the inequality
ki3
m N
n P < ¢ has the following lower limnit:

Red

P = 1 — 28_2)\1‘16-
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Tn the Bernoullian cagse pn = ps = * * « =P A = pg and consequently

el

P>1—2¢ 2patie

17. An indefinite serics of totally independent variables z), 2, 3, . . . has the
property that the mathematical expectations of any odd power of these variables js

rigorously = 0 while
bs \* (2!
E@d) < (—) @Ry, o E{x})

2 K
fori=1,2 3 .... Prove ithai the probability of either one of the ineqialities
AN
izt 3 >EVEBe of mibZat - o 42 < SNASB,
where B, = b1 + b2 + + + - + b, 15 less than ¢ (S. Bernstein). ’Pfj;‘)\:é first that
N
b D
Eleent) £¢2, "‘\

18. Positive and negative proper decimal fractions limifed to, say, five decimals,
are obfained in the following manner; From an urn cofibatning tickets with numbers
0,1, 2 ... 9 in equal proporticn, five tickets are driwn in succession (the ticket
drawn in a previcus trial being returned before the.next) and their respeetive numbers
are written in succession as five decimals of & .pi‘a;ier fraction. This fraction, if not
equal to 0, Is preceded by the si%-i;,%ﬁmﬂ}qﬁymamoiﬂ tossed ai the same time
shows heads or tails, Thus, repeating thissprocess several times, we may obtain as
many positive or negative proper fractions with five decimals as we desire. What
can be said aboui the probability that the sum of » such fractions will be contained
between prescribed limits — w nafl\e? .Ans. These n fractions may be considered as
so many identieal stochastic v.agiables for each of which

\\

\ — 10-8)(2 — 10~
B@™) =0) B =B = (t — 10 }6(2 108 < %
AN/ ’
Besides, O
“\'\ 051
\"4 . 2k
S 2
a B m ot =
NN @ =0 “ZFT
si.n%ﬁ;lg‘eneml

R R S P it
: 2k +1 '
Again, the inequality

E
B < (ﬂ) @n!
2 k!

can easily be verified and we can apply the result of Prob. 17. For the required
probability P the following lower limit can be obtained:

u _ 3wt
P>l ~% 59y 2,

H
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or, if w = ne

—ine?

Po>=1—2
Yor example, if ¢ = s and » = 814,
P > 0.99999,

that 13, alimost certainly the sum of 814 fractions formed in the above deseribed man-
uer will be contained between —82 and 82.
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CHAPTER XI
APPLICATIONS OF THE LAW OF LARGE NUMBERS

1. A theorem of such wide generality as the law of large numbers is a
gource of a great many important particular theorems. We shall begm
with a generalization of Bernoulli’s theorem due to Poisson.

Let us consider & series of independent frials with the respeciive

probabilities py, ps, Ps, - - . , varying from one trial to anothier’’’ Con-
sidering n irials, we shall denote by m the number of sugcésses. The
arithmetic mean of probabilities in » trials N
et mt e o
P = P }

will be called the ““mean probability in » trialy: \ /With such conditions
and notations adopted, we can state Pomson’&theorem ag follows:
Poisson’s Theorem. The ;mobabzl@ty af e ineguality

wwﬂgbla%ﬁbéaréy.m g.in

for fized ¢ > 0, no maiter how smally can be made as near io 1 {certainty) as
we please, provided the numbef oftrinls n is sufictently large.

Proof. To show that thid theorem is but a particular case of the law
of large numbers, we u}t an artifice often apphed In. similar cireura-
stances, namely, we. ashociate with trials 1, 2, 3, ... n variables x,
Ty, Ts, - . . 2 dofindd as follows:

’"\"\, = 11in ease of success in the ¢th trial,
§ z; = 0in case of failure in the #th trial.

Since! tha trials are independent, these variables are also independent.
Moraovér

\V B(e:) = E(a}) = py
and the dispersion of ; is
Ps — P} = pag.
The dispersion B, of the sum
R e

is the sum of the dispersions of its terms, that is,

B, = - Page + - - - +pﬂqn_£_2—
At the same time, the former sum represents the number of auccesses m.

208
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Now, applj_ring the results established in Chap. X, Sec. 2, we arrive
st this conclusion: Denoting by P the probability of the inequality

m

I;{ - Pl =e
we shall have

B, i
T O R
P>1 i 2 i T
It now suffices to take ~
1 \

"7 O
to have WO

P>1—19 )

where ¢ i3 an arbitrary positive number no matter h‘ﬁ%’\smah. That
eompletes the prool of Poisson’s theorem,

Evidently Bernoulli's theorem is contained ing ﬁiﬁsen’s theorem as a
particular cage when D\

S 3
"

Pr =Pz = * " :p““=p

) ) .dbraulibratiforg i
Poisson himself atta,chcd?ff{;;{: 1&?50}1,1‘%}& TP his theorem and adopted

for it the name of the “law of large plﬁﬁbers,” which is still used by many
authors. However, it appears 'mor'e‘ proper to reserve this name to the
theorem established in Chap. X, Bec. 2, which is due to Tshebysheff.

2, Let us ecnsider n seiégi exch consisting of s independent trials with

the constant probabilityap. * Also, let

\ my, Mgy, « o 2 Ma

2 , . .
represent the numiber of successes in cach of these s series. Stochastic
variables A\

gy =Sy — 5p)%,  2e = (ma = ep)% 0t % = (ma — 8p)?

are i}de:pendent and identical. Their common mathematical expecta-
tion is spg. The law of large numbers can be applied to these variables
and leads immediately to the conclusion: The probability of the inequality

n

z(ms — sp)®

4 B——— T,
7

can be brought as near as we please to 1 (or certainty) if the number of
serieg n is sufficiently large.
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~ Substituting espg for ¢ and dividing through by spg, we may state the
same proposition as follows: The probability of the inequalitics

n
E(ms — sp)?
i=1
1_e<wNpg <14 ¢
where N = ns is the total number of trials in all » serics, can be brought
as near fo 1 as we pleasc if the number of series is suffieiently large.
The law of large numbers can be legitimately applied to the variables

x; = |m; — sp|; i=1,23, ... O\
with the common mathematical cxpectation O
M, = 2spgCilpsge N

where g = [sp + 1], and leads to the following proposq:ion The proba-
hility of the inequalities

E p §

\Y

X7,

Sim el (2
nM, < 1+

can be brought as near to wﬁb@waggam tH&Hhumber of series is suf-
ficiently large.

For the sake of su:nphclty, let" us use the notations

” \ z(m‘ SPJ?'

= i=l
,\ ) .
N e =
\w B = ) .
n
The pmbabmtles P and P’ of the inequalities
(1)\ Vpg(l — o) < A < A/5pg(1 + o)
(2) Ml — o) < B < M1+ o)
which are equivalent to
2(??% — ap)?
1 — g)8 < i=1 .
{ g)? < pp— <A +0)2
Zlmi = sp|
1—gc™= . <14

nM,
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can both be made greater than 1 — 4, where 5 is an arbitrarily sma]]
positive number. The probability of simultaneous materialization of
(1) and (2) is not less than '

PAP—-1>1—2n

But whenever (1) and (2) hold simultaneously, we have

3 Vepgl—a A _ Vspglto
3) M, ite "B M, 1-¢ N

Thercfore the probability of these inequalities is again >1 — 2n. .NO\W
let us take \ \.
T « \J

%

= 5 ~\

2+ R
where 7 is another positive number arbitrarily chosen. ’..',I;:Emn

l+o‘=1+1_; 1—4+
1—v¢

Henee, the inequalities

\/sm

(lww)dﬁ aEl‘S T ﬁggéln+ T)

follow from inequalities (3) and then' probabﬂlty is a fortiori > 1 — 2y.
It suffices to take o

to arrive at the follon:iﬁé '};ropositlon:
The probabiﬂtx.@f“‘the inequality

:..\:;' .
o\v % _ _,_vsm <

for a ﬁxpd"b and sufficiently large number of series can be made as near to
1 as “‘\e\pleabe
I spq is somewhat large, the quotient

v spd
M,

differs but little from /7 /2 (see Chap. IX, Prob. 2, page 177). I?ence,
when the number of series is large and the series themselves sufficiently
long, we may expect with great probability that the gquotient

A
B

will not differ much from ‘\/‘F/—Q-

I
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DivERGENCE COEFFICIENT

3. The considerations of the preceding section can be gencralized.
Let us consider again » series containing s trials cach, and let

My, Mz, . . » Mg

represent the numbers of successes in each of these series. Without

specifying the nature of the trials (which-can be independent or depend-

ent) we shall denote by p the mean probability in all N = ns trials-and

by ¢ = 1 — p its complement. Again considering the quotient '
O\

7N\S *

{

E(ms — sp)?
i=1

C="m D

we scek its mathematical expectation

p §

a\\
] — A ’
5@ =0. (&

When all the N trials are of the Bernoullian 'tis,fpe, D = 1. Butitis also
possiblc to imagine cases when D > bt D < 1. Lexis calls /D the
“coefficient of dispersion™™ “WOLAHHR TMO A Ntself the “theoretical

divergence coefficient.” If my, "]'P?:z,'- . . s are actually observed fre-
guencies in n series, the quotient -
\ N Eims —sp)? )
s d=1 : ’
A P Npq

#

‘may be called\®empirical divergence coefficient.” Then, if the law of
large numpers can be applied to variables o

oS
¢

O o = M = )

Q T

we can expect with probability, approaching certainty as near as we please,
that the inequality

t1=1,23, ...

)

|D' — D] < ¢
will be fulfilled for an adequately large number of series.

Thus far we have not specified the nature of the trials. Now we shall
suppose that all_{\? =ns trials, distributed in n series, are independent
but with probabilities varying in general from trial to trial. Let

Pi, Poiy « o . Pas (3'=1‘.2,. ..?‘&)
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be the probabilities in successive trials of the sth series. Their mean

P+ put 0+ Du

8

P =

iz the mean probability in the ¢th series. TFinally

_prtpet - AP

k2

N
ig the mean probability in all N = ns trials. As {o the expectation oF
(m; — sp)%, we find \\\ 7y

E(m; — bp)z = E{m: — sp; + s(pi — p))? = E(m: — spy)® —1—,&{@ — p)?
since 70

| o E(m; — ap) = 0. o
© On the other hand,
- \,
E(mi - 8p¢)2 = 210:- Epn P N Q'Ps 2?],;
i=1 i= 1 Y \/ =1
Cand
wiww.dbr aullbrral y or% in
2(1). — pn) gt + 2 vk
i=1
whence : : \;
. 3 \\ 3
E(m; —"sp? = spe — sp} — 2, (¢ — P
AN/ i=1
Now, lett.ingxqj\ft}.l;;a values 1, 2, . . . » and taking the sum of the -

results, we ge{%“'

L 3

n &
”\EE(mn — sp;)* = msp — 82 P =Y 3 o — P

Ji=1 4=l i=14=1
But
n n
53 (p - pi)t = nspt DN
i— i=1
wheuce finally ' .
n " L
- -1 1 o
D=1+ 2 X~ - T s~ P
i=1 i=1 j=1

Two particular cases deserve special attention.
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Lexis' Case. Probabilifies remain the same within each serics,
but vary from series to series. In this case p; = p;and the expression of
D beeomes:

s§—1
D=1+ Ep—pez.
nDG _=1( )

The theoretical divergence coefficient in this case is always greater "Q;an

1 and may be arbitrarily large. \
Poisson’s Case. The probabilities of the corresponding trigly in all

series are the same, so that : £\
: By == ;”32,
&V
o omtmt s AN
pP=p= p
In this case the divergence coefficient &

Z,(‘P = r)e
Ty F@q@@.’aﬁi LOorg.in
RO
is always less than 1, ~N
Since the law of large ?Lgﬁjbers cvidently is applicable to variables
‘ \\n.xi _ (s — sp)z’
O spy

we may expec Zt;h\ai the empirical divergenee coefficient 1Y will not
differ much frefa’D if the number of series is sufficiently large.

For nq@fi’cal illustration let us eongider 100 series each containing
100 triakgysuch that in 50 series the probability is 24 and in the remaining
50 sefies it is 3¢. Herc we evidently have Lexis’ case. The mean

pl‘o\béﬁ'ility in all trials is

=

p =
and
100

2(‘% - Pi)? =5U'Th+50'1—-ﬁ—3 =1.
i=1 .

Finally,
D =1+ %2 = 4.96.

Nov-v,- suppose that we combine in pairs series of 100 trials with
probability 2¢ and series of 100 trials with probahbility 3¢, to form 50
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series cach of 200 trials. Evidently we have here Poisson’s case. The
mean probability in each series again is p = 14 and

200
(5 =72 =100 - 135 + 100 - 1fy = 2.
fal
Finally,
D =1— g =086

The consideration of the divergence coefficient may be useful<jfi >
testing the assumed independence of trials and values of probabilities
attached to these trials.  In the simplest case of Bernoullian trialf, With
& consiant and known probability, the theoretical divergence eoefficient
is 1. Now, il the number of serics is sufficiently large and the tmpirical
divergence coefficient turns out to be considerably diffegent from I,
we must admit with great probability that the trials we'desl with are not
of the supposed type. If, however, the empirical [E\fergence coefficient
turns out to be near 1, that does not conclusively/prove the hypothesis
concerning the independence of trials and ko assumed valie of the
probability. It only makes this hypothesis platsible.

There are cases of dependent trials,,[’ebmplex chains considered by
Markoff) in which the thedtéticdbdkibgenvecrsefficient is exactly 1 and
the probability of an event has thétsame constant value in each trial,
insofar as the results of other tyials remain unknown. Cases like that
may easily be mistaken for Bernoullian trials without further detailed
study of the entire course {trials,

4. When there is goodeeason to believe that the trials are independent
with a constant but uikpown probability, we cannot in all rigor find the
value of the empirjgaldivergence coefficient

)Y n
\\ E(m‘- — sp)*
O\ s =1 -
xe) ="

*

) 4

to compare it with the theoretical divergence coefficient D = 1, since p

remnsing unknown. '
But, relying on Bernoulli’s theorem, we can take the quotient

M

N
where
M=m+m-+ -+t

as an approximate value of p. By taking p = M/N in the preceding
expression for ¥ we get another number
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NEK% ﬂ@

+H i=1
b = M{N — M)
which in general is close to IY. However, considering my, ms, . . . ¥

not as observed but as eventual numbers of successes in n series, the
mathematical expectation of D/’ is different from 1. To avoid this

difficulty, it is better to consider a slightly different quotient ~
: MY .\:\
(N — 1)2(7?% - sﬁ) S
Q = igl;_— . 7 ”}}
(n — M(N — M) A\ 3

For this quotient there exists a theorem discoveredy ﬁn\l\proved for the
first time by the eminent Russian statistician Tschuprow.
Theorem. The mathematical cxpectation of Q\:p\s' rigorously equal to 1.}
Proof. Here we shall develop the pro-:ai\gwen by Markoff. The
above given exprewon of € presents itself\p ‘the form ¥, 04 and therclore
has no meaning in two cases: M = 0 o = N. For these excvptmnal
cases we set @ = 1 by gi,c;ﬁm&wyuldfanylbhgnnﬂi 0 nor M = N,

ran present ¢ in the form X
(4) Q & .n(i\ -1 E
S w—1 MV - M)
Considering mi, mafp. . m, as stochastic variables agsuming integral

values from 0 tQ{,:t & probability of a definite system of values
\:i\“ My, Mg, . . . Wy
i8 N\
P.f N s! s! s! vt
N ) . — M N
w07 malls — mayl mpl(s — ma)! s — m) L

\

o get the expectation of @ we must multiply it by P and take the
surn

E@Q) = 2PQ

extended over all non-negative integers mi, mg, . . . m,, cach of them
not excceding 8. To perform this multiple summation we first collect

all terms with a given sum
my 4+ me+ - - - 4 m, = M.

! The theorem itself and its proef given by Markoff can be extended to the case of
series of unequal length,
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Let the result of this summation be 8,. Then it remains to take the

sum
Ri
>, Su

M=0

to have the desired expression E{). To this end we first separate two
terms ccrresponding to M = 0 and M = N. In the former case

My =My ="'"+" =y, =10 O

and the probability of such an event is ¢¥ while @ = 1, In the Jabter
case O ’

My =My = """ =M =35
the probability of which is p¥, while again @ = 1. Thui

N-1
EQ =p"+o¢+ 28
@ =" +4¢ 21 A
To find 8 we observe that the denomma,t»or of @ has a constant value

when summation is performed over varlabl‘e integers m, Mg, . . . M,

connecled by the relation, . d_brauh];uqry org.in
m1+mg+ :—{-m“—M.
Hence, it suffices to find two s(ms
§‘&R and 2Pm?
exteunded over integens,}:gpl, s, . . . M, varying within limits 0 and s
and having the sum»M/ To this end consider the function
4'\(;;32351 + g)*(ptet + g)* - - - (plet + )"

involving » 4%1 arbitrary variables ¢, &, &, . . . £ When developed,

14 consnts‘oi terms of the form
NN

2\ Plmtmet - < magmifitmsbrt - o Fmain

Il
=

E\dently we obtain the sum TP bysetting &, = £ =« = £
and taking the coefficient of #¥ in the expansion

(Vtrmtom - 1o = (0F + I

Thus

Nl -
(5) EP = mp”qﬂ A
To find ZPm} take the second derivative

v
&
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and after setfing & = £ = - -+ = £, = 0, expand

&
a'E? fimie= - =fp=1}

and take the coefficient of . Thus we find

T @- (N—2)1 s
®) EP’”‘*—[*’(M—1):(N—M)z+s(s_1)(M—2)!(N—M)Jp9’ '

N
Referring to (4}, (5), and (6), we casily get .
AN
. aN -1 W-2Ww 4
S = TN = 3D w0 = TV — 3 — {0
+ (O — W = 1) — MY Diprgs-v;
or, after obvious simplifications, : .ms\i'
Nt m\
Su = N — RS

Hence ' *\

N—1 \

‘u’z.:. ISM =@ —I\;\g%«del_a'rgﬁiiE: Ig(.;‘gl.iﬁ_— Y =g,
and finally N

i\ EQ) = 1.

Markoff, using the Same method, succeeded in finding the explicit
expression of the expectation
A\® / (0 — 132
Ke Q@ — 1.
Since ther€ Is"no difficulty in finding this expression except for some-
what tedjqﬁi\\calculat-ions, we give it here without entering into details
of the psoof :

e \ ¥
\

N IN(N — ~ M- o
EQ — 1) = [ : % - 3)2M s N oML 10#?*"@‘*’““,
M=1

n— 1Y(N — 2)(¥ M N-—-M
whence the following inequality imm ediately follows:

e NN — )
FQ- U <o —hw—am= )Y

In ease n Z 5 a still simpler inequality holds:

2

n—1

) E@ -1 <
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Let R be the probability of the inequality
@Qz1-+te

where € is o positive number.  Applying the same reasoning to inequality
(7) as was used in establishing Tshebysheft’s lemma, we find that

2
E< fn — 1)e
Likewise, denoting by R’ the probability of the inequality
Q=1-s <O
we have O
2
B o< -2 _. "G
N R

Thus, in & large number of series it becomes very unlikely that ine
value of Q found in actual experiment would lie :ogtaide of the interval
1 —¢ 1-+4e¢ Yorinstance, the probability fof @ = 2 in 100 series is
surely less than A\

2 o0
www.dbrggibrary.org.in

or nearly 0.02. However, this limit is much too kigh. Tt would be
greatly desirable to have a goqdd ‘epproximate expression for the proba-
bility of either one of the i&éﬁué-]ities

Q;Zi'—]—e or Q=1—e

. A\ X

Bug this importaﬁt' and difficult problem has not yet been solved.

5. Tn order t\Hlustrate the foregoing theoretical considerations we
turn to exper’ﬂkénts reported by Charlier in his book “Vorlesungen
iber die Gflihdzi‘lge der mathematischen Statistik” (Lund, 1920). He
made lﬁ*ﬂﬁ{] drawings of single cards from a complete deck of 52 eards
(each\afd taken being returned before the next drawing), and noted
the frequeney of black cards. The drawings were divided into 1,000
series of 10 cards, or into 200 series of 50 eards. The results are given
in the tables on page 220.

Assuming the independence of trials and the constant probability

= 14 the theoretical divergence coefficient must be 1. Let us compare
it with the empirical divergence coeflicient derived from Tables I and II.
To this end we multiply the squares of numbers in the second colump
by the numbers given in the third column., The results are:

For 200 series of 50 cards For 1,000 gerics of 10 cards
E(mi - ?33)2 = 2’487 Z(mi - Ps)g = 2’419
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TasrLE I.—NTMBER or BLack Carps 1vn Tasre II.—Numeer oF Brack Cskps

200 Groues or 50 Carvs Eacr 1,000 Grouss or 10 Casna Eacm
; -
Number of Number of
i i ifference | groups wi
freguencics frequencies

14 —11 1 0 -5 3
15 ~10 o 1 -4 10,
16 — 9 2 2 —3 43
17 -8 2 3 -2 Rei
18 -7 4 4 -1 ~\ 241
19 -6 8 5 0y ™ 247
20 -5 6 6 1O 202
21 — 4 15 i 20> 115
22 -3 13 8 NS 34
23 - 2 15 9 4 9
24 -1 34 10 D 5 £
25 0 14

26 1 21 o\

27 2 | 26 a\

28 3 14 .

gg ; W\%fgi\/.dbl'vi‘![ ;Bl"ar‘y.org. in

31 6 & ‘f:.

32 7 3¢

33 2 A

Dividing these numbé‘s by 10,000 - '4 = 2,500, we get the following
ernpirieal divergence{ xotfficients:

',\:..'D’ = 0.9948; D" = 0.9676.

Both arc loke to 1, so that the hypotheses of independence of trials
and cons@a,pt\probability 14 for each of them, are in good agreement with
empirigghiresuits. The second divergence coefficient, corresponding to
mcﬁ?r}uﬁmroug groups, differs from 1 more than the first, corresponding
to only 200 groups. But such a difference can be aceounted for by
fluctuations due to chance.

Serice of 50 trials are long enough o test the theorem established in
Sec. 2 of this chapter. The quantitics denoted there by 4 and B are
here correspondingly:

42 = 381 A = 3.5263
B =48} B = 2805
whence

4. 1.2571

o
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T
\/% = 1.2533.

Again the diﬁérence, only ahout 4.10~%, is rather small.
In this example, the probability of drawing a black card was assumed
to be 14, In case we do not know the probability, but suppose it to be

constant throughout 10,000 independent trials, we must consider the
coefficient

while

O\
(N -1 S/ My OV
A V(L) (’”’ SF) N
s=1 W
N
In our examploe ’

l’:i"
n =1,000; N =10000;, M= 4;9‘3\3
s = 10; s% = 4.933. 0

To evaluate the sum \
1,000 QO
Sureru Ab ot B3P in
i=1 ..s".:‘
we write it in the form X N\
1,000 . “\ "1,000
8= (mi — 5)2.\@021342 (ms — 5) + 1,000 - (0.067)2.
i=1 \ i=1
Now \,)
Yy o
;{?.‘ 3, (ms — 5)? = 2,419
R\ 1,000 - (0.067)% =  4.489
i»\"iv 1,000
™ 0134 (m; — 5) = —8.978
\$) ? (
S = 2,414.51
This is to be multiplied by the number
n(N — 1) 1

= HMEN — M) 497.3
The result is . '

0.9668,

near cnough to 1 for us to consider the hypothesis of independence of
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trials and the constant value of probability as in agreement with experi-
mental data.

ExampLEs oF DEprENDENT TRIALS

6. So far we have dealt only with independent variables. But the
law of large numbers holds, under certain conditions, even in the eage of
dependent variables. Leaving aside generalitics, we shall show the appli-
cation of the law of large numbers to a few interesting problems invol{ing
dependent variables.

Let us consider first a Bernoullian series consisting of »n A1 inde-
pendent trials with the same probability p for an event E, thésopposite
event being denoted by ¥.  We associate with trials 1,2, . \..% variables
Zi, T, . . . &, defined as follows: A\

. 0O
25 = Lif B occurs in trials ¢ and &I,
z; = 0in all other cages. \

N

The probability of z; = 1 evidently is p? whﬁifnothhg Is known about
the values of other variables. But if weNknow that z, ; = 1, which
implies the cecurrence of E in the ith tx;iaf,*then the probability of 2; = 1
is p.  Thus, consecutive V@;jab&%ﬁ-ﬁ;ﬁﬁ@ﬂ@)@dgnﬁ. However, z; and z;
are independent if [k — 4] > 1, as We\can essily see. Since

E(@) = B@), & 11 (1 — p% -0 P

the expectation of the sul{";i +od - Az, will be
By + oz + - - - + @) = np’.
As to the dispersiohfef this sum, it can be expressed as follows:
iIN”
A
8= 3 B — p)° + 230 B — p(e; — pY).
" i=1 e

Now, O
© N B 5 - @) - 2e) + 5 = 21— )
and
(9) Elw: — pD (s = p%) = E(w; — p%) - E(z; — p?) = 0

for § > 4 + 1 because then z; and %, are independent. But
(10) Bl — pMaws — p?) = E(xizia) — pt = pb — pt
since the probability of simultancous cvents

I = 1, Tin=1
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is p%. Taking into aecount (8}, (9), and (10}, we find

B, = np%(3p + 1) ~ 2p'q
and the condition

B,
= —0 a8 7 — w
n

is satisfied. Hence, the law of lurge numbers holds for variables ,,

%5, . - - %n To express it in the simplest form, it suffices to notice thath
the sum, A
: A\
1t 2+ -+, 7N\ ¢

represents the number of pairs EE occwrring in consecutive trils of the
Bernoullian series of n 4 1 trials, Let us denote the fren:iuency of such
pairs by m. Then, referring to the law of large nun‘ﬁg}rs, we get the
following proposition: .

If in n consccutive pairs of Bernoullian tﬂa{s:tﬁrf Jrequency of double
suecesses EE is m, then the probability of the fnequality

E’ — p"l <
wwildbraul Qjm'y_org_in
will approach 1 as near as we please Wllen n becomes sufficiently large.

7. Simple chains of trials, described in Chap. V, Sec. 1, offer a good
example of dependent trials 40\ Which the law of large numbers can be
applicd. Let p: be the gikén-probability of an event & in the first trial.
According to the definibion of a simple chain, the probability of E in
any subsequent trial o or 8 according as B oecurred or failed to occur
in the preceding tafal? By p. we denote the probability for E to occur
in the nth tri%wihen the results of other trials are unknown. Let

R 8
™3 d=a—f = —
A o A P 1—4

Therfjgtcording to the developments in Chap. V, Sec. 2,

pn=p + (p1— P

whence
,p1+,p2_{_.._.+p"_ pl—pl-—ﬁ”
- n. =P + i 1- 5,
barring the trivial cascs 8 = 1 or 8 = —1. Tt follows that p represents

the limit of the mean probability in # trials when n increases. indeﬁ.njte%y,
and for that reason p may be called the mean probability xn an infinite
chain of trials, When it is known that B has occurred in the sth trial, its
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probability of occurring in some subsequent jth trial is given by
PP =pre¥t g=1-p

In the usual way we associatc with trials 1, 2, 3, . . . variables
€1, X2, Ty, . . . 50 that in general

2; = 1 when E occurs in t.hc tth trial
x; = 0 when F fails to oecur in the #th trial.

Evidently
E(z) = E() = O

In order to prove that the law of large numbpr% cah bo am;ﬂhd to
variables zy, s, 3, . . . , we must have an idea of the beh:-u?ior of B,

i !

for large n. By definition N

 {

B,=E@i—pm+2—p:+ —p)t = E\E(x, — pa? +

+\22.E (m, Pm)(% - pr)]

Wk

The first sum can easily be found. We hswe

B(e: = p)* = ps = 7} w9gdolatipipors p)5 ~ (o = p)0H=
whence A\

A = 3 (x; — p)?~ npg
’\\:-é1
neglecting terms whigh, rémain bounded. As to the second sum, we
observe first that | ;"
EZ: — p)(z; — pj) = E(zay) — pips
. . \Y aqs
Again, smee,&e#probahlhty of
~~ ;= 1
is e\éc{éﬁﬁy PP we have
N Ezws) = ppp,
and
B(z: — pd)(®@; — pi) = pipP ~ p5) = pgd— +
+ (o1 = p)(@ - PIF — (py — p)roti?
NOV}’, for a fEXed .?: = 1,2, ... n— 1, we must take the sum of these
expressions letting § run over ¢ + 1,7 4+ 2, . . . n. The result of this
summation is
§ — gn—itl

—— i—1 _ Sa—l
Pa 1—3 + (PI — p)(q - 'P) (p;_ —_ p)gﬁ‘a\T_{;_._.
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Taking 7 =1, 2, 8, . . . » — 1 and neglecting in the sum the terms
which remain bounded, we get
B = ZE(x‘- — P — p) ~ npgt
F>i 1-3
whence
B,=442B~ npg%;-
This asymptotic equality suffices to show that QM
B. .\:\’
ot 0 as n— ©, O “

Therefore the law of large numbers ean be applied tp,f\;ﬁ}fiables 1,
T, Ty, . . . . Since the sumn LV

Tit 2t - =M

. . {2 .
represents the frequency of E in g trials, theddw of large numbers in
this particular case can be stated as followshHFer a fixed ¢ > 0, no matter
how small, the probability of the inequality™

www,dbraulibrary.org.in
m P Pa et X‘Prff<e

n )
tendsto tasn— o, &
The arithmetic mean \\’
O tpat - + P
‘.’\’.3 _ n

itself approachgs:t’}lg limit p. It is casy then to express the preceding
theorem t-hup{T‘ﬁe probability of the inequality

\ 3
fendsto 1 as n — .
This proposition is of exactly the same type as Bernoulli’s theorem,
but applies to series of dependent trials. .
8. Let a simple chain of N = ns trials be divided into n conseeutive
series cach consisting of s trials; alse, leb mq, M2, . . o e be the fre-
quencies of E in cach of these series. When N is & large number, the
mean probability in N trials differs little from the quantity den?ted b.y p.
It is natural to modify the definition of the divergence coefﬁleent given
in Sec. 3 by taking p instead of the variable mean probability in N trials.

Thus we define
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n

3, (mi — sp)?

b Npg

In our case, the variables
Xy = (my — sp)? Xy = (ms = sp)% + - - Xo = (ms — sp)?

are neither identical nor independent, although the degree of dependence
is evidently very slight. These variables can also be presentedin ‘the

form _ O
(1) (x“_pnlnx““‘*p—!""'+5a+e—1—p)2,'s:\
taking successively ¢ = 1,5+ 1,25+ 1, . . . (n — L)s(1.

To find the mathematiesl expectation of (11) it a{ﬁéés to notice that

Bz — p)* = Bz — p)* + (p: — p)* = pg +Xo— p)(p1 — p)oi?
Ee; — )& — p) = Bl — p)(a; ~ P Sp: — p)ps — p)
= pg¥~" + (pr — pl(@> p)o
and then proceed exactly as in the approximiate evaluation of B, in Sec. 7.
The final result is o\ o

E(ze —p+ Zap1 — p + www.d"ﬂsra”ﬁil:n};ﬁary.m)é.m

i T8 2P0 N —p)(p— p)(L+ 8
= 8P 5 (1~—5)2+_' a =5 g1

2pg o, "‘,} g —pips — ) et
+ a— 3)2‘5\{{ T“a)z—[%(l — &) + 1 4 sfoete-L

For somewhat large & the two last terms in the right membor are com-
pletely negligibles64s the third term if ¢ = s + 1. Hence, with a good

approximatiq{l\,;}“
BEY = oo} £ - (A 0D L4
~CB(X) = epo}t - (122‘3";)2 it i>1
and
plts_ 2 4+ &= p)p — )1 + 8
1—6 s{(1—35)2 Npg(l — 5)¢

Again, when N is large, the last term can be dropped and as a good
approximation to D we can take

1434 25
12 = -
(12) b 1-6 s(1—8%

It can be shown that the law of large numbers holds for variables Xy,
Xy, .. . X, and therefore when 5 (or the number of series) is large, the
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erapirical divergence coefficient is not likely to differ considerably from
D as given by the above approximate formula.

9. In order to see how far the theory of simple chains agrees with
actual experiments, the author of this book himself has done extensive
experimental work. To form a chain of trials, one can take two sets of
cards containing red and black cards in different proportions, and
proceed to draw one card at a time (returning it to the pack in which it

belongs after each drawing) according to the following rules: At the

outset one card is taken from a pack which we shall call the first set}
then, whenever a red card is drawn, the next card is taken from the ﬁrét
set; but after a black card, the next one 13 taken from the seco;n?l set.
vidently, these rules completely determine a series of trialy/possessing
propertiez of a simple chain. In the first experiment the first pack
contained 10 red and 10 black cards, while the second pa(:k contained 5
red and 15 black cards. Altogether, 10,000 drawings were made, and

following their natural order, they were divided, Bito 400 series of 25

drawings each. The results are given in Table IH

TaprE III—DisTRIeUTION 0F RED CARDS w &00 SErims oF 25 Carps

Frequensy of wiwhifléseantih rai@? wiben of series

red cards, m m — § 4N | with these frequencies
1 o 2
2 )-8 4
3 K -5 8
4 —4 27
N -3 29
,r{ —2 54
& -1 a7
N 0 52
'."\\ 9 1 47
S 2 4
R 11 3 41
\V 12 4 20
13 o 20
14 [i] 7
15 7 4
16 B 3
17 9 1

The sum of the numbers in column 3 is 400, as it should be. Taking
the sum of the products of numbers in columns 1 and 3, we get 3,323, which
is the total number of red eards. The relative frequency of red cards in

10,000 trials is, thercfore,
0.3323.
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In our case
a = 3, 8=t 8=1

and the mean probability p in an infinite series of trials

Thus, the relafive {requeney observed differs from p only by 1068 and
in this respect the agreement between theory and experiment is yery
satisfactory. Now let us consider the theoretical divergence cogffieient

for which we have the approximate expression O\
7 A\
_1-+3 28 \
D=3 5 sl — 8 N

Here we must substitute § = }{ and s = 25. The restl¥’is
D = 1.6831, approximately. ’

To find the empirical divergence coefficient m{éi?n'ust- first evaluate the
sSum %

8= Z(m — zgi)z"
extended over all 400 scries. For th&‘sake of easier caleulation, we
present 8 thus: W W dbrauhhl ary.org.in

— Z0m - {72 §30m — §) + 48,
Now irom Tab]e IIT we gefgm
Z(m — 8= 3,521; Z(m — 8) = 123
whenece
P\ 8§ = 3,483.4.
Dividing thlé\number by 200004 = 292222 we find the empirical
divergence cbqﬁiuent
R ~. D' = 1.568

whmh di‘ffers from D = 1.631 by only about 0.06, well within reasonable
limitg,)

10. In two other experiments two packs were used; one containing
13 red and 7 black cards, and another 7 red and 13 black esrds. In
one experiment the pack with 13 red cards was considered as the first
deck, and in the other experiment it became the second deck. The
new experiments were conducted in the same way as that described in
Sec. 9, but they were both carried to 20,000 trials divided into 1,000
series of 20 trials each. In the first experiment, we have

a = 14, 8 = % o= 5, P=3
and

D = 1.796, approximately,
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while the same quantities for the second experiment are

and

@ = 3%

B =43

b

— 7 P=13

D = 0.556, approximately,

999

The results of these experiments are recorded in the following two

tables:

Tasrr IV.—ConcErNING THE Firer EXvErIMENT

N\

Trequency of | Difference, Number of series
red cards, m m — 10 | with these frequencies
h
2 —8 3 N
3 =7 5070
1 —6 g
5 —5 36"
1] —4 W \JBY
7 -3 C O s
8 —2 ) 103
9 -1 ) 117
10 (NN 128
11 ww .dhthilibrary . orglii
12 NG 101
13 N°© 3 93
14 AL 4 48
15 A\ 5 39
186¢ ’\\./ [ 26
'LT\ 7 7
T 8 1
29 9 1
\ W 20 10 1

TarLE V,—CONCERNING THE

Spcoyp EXPERIMENT

Frequency of | Differcuee, Number of series_
red cards, m — 10 with these frequencies
5 —5b 2
6 —4 10
7 —3 48
8 -2 112
9 —1 1943
10 0 251
11 1 201
12 2 113
13 3 56
14 4 9
15 5 5
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Taking the sum of the produets of numbers in columns 1 and 3, we
find
10,036 and 10,045
as the total number of red cards in tho first and second experiments.

Dividing these numbers by 20,000, we have the following relative
frequencies of red cards:

0.50018 and 0.500225 ~
extremely near to p = 0.5. From the first table we find that .
3(m — 10)2 = 8,924 N

summation being extended over all 1,000 serics, Dix7idjng‘%his number
by 20,000 - 14 = 5,000, we find the empirical dlvergu{:e coefficient in
the first experiment
D’ = 1,785 O
. 7o\
which comes eloge to R
D =1.796.
Likewise, from the second table we find &
WW, dbrauh}n ary org.in

Z{(m — 1{1)2‘—- 2 709
whence, dividing by 5,000, o

, .\xj@r = 0.5418
again eclose to N\ N

%

oo/

Q) D = 0.5562.
Thus, all the eséeﬁt-ia-] circumstances foreseen theoretically, for simple
chaing of trialg{areé in excellent agreement with our cxperiments.
O\ '
=™ Problems for Solution
2NN
T\-.gm an wrn originafly containing & white and b btack balls, » balls are drawn
in guctegsion, each hall drawn being replaced by 1 -+ e(e > 0) balls of the same eolor
beforc the next drawing. If m is the frequency of white balls, show that the prob-
ability of the ineguality

m 1]

i3 a+b<

does not tend lo 1 a8 n increascs indefinitely {Markoff, G. Pélya).
Indication of the Proof. If 2 = 1 or 2; = 0, according as a white ar 4 black ball
appears in the 7th drawing, we have

a N o a+c
a-+b a+b atbte

Ez) = B(zh =
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Hence

na_\' niabe
w=F SR ok =
B ($1+x2+ & a+b) (a+b}2(a+b+0)+

PR . M—
@ Foa+bto

9. Mavbe's Problem. A group of exactly m uninterrupied sussecsses E or failures F
in & Bernoullian serics of trials with the probability p for a suecccss is called an “m
sequence.”  Tf A is the frequency of m sequences in n trials. show that the probakility
of the inequality A

E ( Yok 2, E N
n—;oq-i—qu"‘}‘<e O\

P\ N\

for a fized e converges to 1 as # becomes infinite, L >

Tndication of the Proof. Associate with each of the n =n — m{ I first trials
varlables @, @y, . . . % assuming only two values, 0 and 1. For I i < we set
2 = 1 if, heginning with the {th trial, a succession of mletters'Ebr}f i preceded and
followed by # or E. In all other cases @ = 0. Weset x; 2 Wif; beginning with the
first trial, there is a suecession of m letters E or ¥ ended hpFyor E; otherwise 7, = 0.
Finally, z, = 1 if, beginning with the pth trial there is Kég. ession: of m letters E or F

preceded by F or E, otherwise z, = 0. Show that \™\
Rl +2s+ o - +a0) = (0 —m — D@+ 1) + 207 + Pg™)
Flos + i+ -+ - + 20 a i) oty i

where P remains bounded. RN \ )

8. The following interesting series of dependent trials has been_ _Eil_lggested by’ S,
Bernstein: Two urns contain white(bnd black balls. The probabilities of dra‘v?ﬁ?:lg
white balls from the first and seugm{imms are, respectively, pand p". The prrobfﬁ?z.hues
of drawing blsek balls from é}‘sa:ble umsareg =1 —pand¢ =1—17" Finalty,
5

the probahility of taking ahballirom the first urn at the outsct of the trials is a. A

series of trisle is uniquely\defined by the following Tule: Whenever a white ball is
: but when a black

drawn (and returned)pghe next ball is drawn from the same urn; ia

hall ig drawn, the u’ce{gt' $all is taken from the other urn. Let o, be the probabl_hty
that the nth ballWilt be drawn from the first urn when the results of ‘o.t.her drawings
remain unkngwas TUnder the same assumption, let p. be the probahility of the nth

ball being white. Find general cxpressions of en and Pe.

Hrypey™
O wo = onlp F 7 D FL =
thh
1 -—p’ _ 1 ‘—‘p'_’ +'p’—]_)"‘1.
a"=2—z=~p’+(a =77/
Also :
Pa = @ + {1 — ex)p’
whenee
_— 3
Po = i LA —l——p—:)('p - +p D
2—p-7 2—p—¥

: : ; : i drawn, what are
4. When it becomes known that in the ith trial & white ball was s N v
the probabilities ! and pt) of taking 2 ball from the first wn in the fth{F > ©) trial

and of drawing a white ball in the same trial?



932  INTRODUCTION TG|\MATHEMATICAL PROBABILITY [Cuse. XI

Hixt: The probability ot that it wae tho first wrn from which a white ball was
drawn in the fth trial is delcrmined by Bayes’ formula:

f i o
ot = ot = 2.
Fornzi+1
ddy =eldp+p - +1 ¢
whence
: 1 -7 P 1-— p'
) =~ —i—(—-"———— (p+p — 1) Q)
T rep p Z-p-—7p ? .
forj > ¢+ 1. Furthermore ¢\
. . . NS
25 = ety + @ — o) \
forj = i+ 1. N

B. From now on we shall agsume p + ' = lorp’ =g, ¢ = p Show that the
law of large numbers can be applied {o variables %y, 25, @4, . -":}\vhich are defined in
the usual way: .

2 = 1if a white ball is drawn in the)eth trial,
z; = 0 if 2 black ball is drawn in.the*fth trial.

Indication of the Proof. Evidently E{z:) = JE‘I(.i-:;ﬁ)"= p:.  Furthermore

B, = EE(z‘?"i‘%;%?ffg'ﬁ’@;o—r%«iﬂxf - ).

i=1 WO S
Now ~ .
Blm — pia 2pg(l — 2pg); 2> 1
E(z: + {i)?~3= pg + ol — a){p — gL
Forj>¢>1 \

E@psgda —p) =0 i j>i+1
AEw — pi#i — pua) = pg(l — 4pg).
Fori =1andj > o
NOFB@w —po@ —p) =0 i >z
Bl &0 — p2) = ap* + (1~ a)g® — (1 =~ 2p0){g + (p — Q)ex).

Henee ."\'.M:"
N\ By ~4pg(l — 3pgin

and }»e law of large nwmbers holds. It can be stated as follows: I in » trials the
frequency of white balls is m, then the probability of the nequality

%_(Pg’l‘qz) < e

tends to 1 as » fends to infinity for any given positive number e
8. Let r ~ p? + ¢* be the mean probability in infinitely many trials. Find the
divergence coeflicient
kil
3, s = o
i=1

B

when N = ns trials are divided in n cotzecutive groups confaiming s frials each.
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Indication of Sulution. From the foregoing formulas it lollows that
Blzg — 7 F Zaps — 7+ 1 0+ Taper — 1) = dspo{l — 3pg) — 2pg(l — dpg)
ifa>1. Hence

Ez (ms — 87)% = 4Npg(L — 3pqg) — dspg(l — 3pg) — 2(n — Lypg(l — 4pg).
Again

Elm. — sr)? = 4spg(l — 3pg) — 2pg(8 — 10pg) + p(1 — 6g + 12¢* — 4g) —
. —ealp — ol — Spq)

so that finally A ¢
£ \
2%y 1 dpg +(p—q)(p-a)(1-8pq)_':\}
1 —2pg sl — 2Zpg) 2Npg(l —2pg) o~
For large N with a good approximation A

~
_20Bpg ) 4P \%
1 —2pg &l — 2pq) O

7. Two sets of cards containing respectively 12 redes } 4 black cards (the first
deck) and 4 red and 12 black eards (the second deck)wére hsed in the following experi-
ment: The Argl card was taken from the firsf deeld aﬂd in the following trials, after
a red card the next one wag taken from the same, dct‘k but after a black one the next
card was talen from the other déekiw. dbﬁtﬂgekﬂﬂfmﬁgards were drawn, and in their
nutural order were divided in 1,000 series of'26 cards cach. The results arc reeorded
in Table ¥1. Tlow close is the agreemcnd, Petween this cxperiment and the theory?

Tagrs VI—DISTRIBUTION OF. {RED Carps IN 1,000 BEries oF 25 Carps

Frequency Df\ Dlﬂ'crence, Number of scries

red cavds, 4, m — 16 | wilh these frequencies
@ 10 1
\‘:.\7 -9 1
ANAE:) - 8 1
9 -7 12
N 10 — 6 13
~\J il -5 43
\/ 12 — 4 65
13 -3 92
14 - 2 im
15 -1 162
16 0 04
17 1 164
18 2 68
19 3 110
20 4 26
21 5 28
22 i} 10
23 7 7
24 8 i
23 9 i
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Ans. In the present case p = ¢’ = 34, p’ = ¢ = }4. Mean probability in infinitely
many trials:

Il

p?_’_qg

Theoretical divergence cocfficient: D
Relative frequency :

§ = 0.625,

1384, Frequency -of red cards: 15,606,

0.62754,

I

. 488
- elose to 0.625.
Empirical divergence cocfficient: D’ = 1.3845, very close to 1.384,
The probability of taking a card from the second deck is 0.25, Now, by ackyal
counting, it was found that in 7,500 trisis a card was taken from the sceondideck
1,856 times. Hence, the rela,tlve frequeney of this event in 7,500 trials is

143E = 0.2475, O

again very closc to (L25. ' ,n:‘

;\’
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CHAPTER XII

PROBAEBILITIES IN CONTINUUM

1. In the preceding parts of this book, whenever we dealt . with
stochastie variables, it was understood that their range of variation Wwas
represented by a finite set of numbers.  Although, for the sake ¢f\ogtter
understanding of the subject, it was natural to begin with thig kimplest
case, there are many reasons why it is necessary to intrgthice into the
caleulus of probahbility stochastic variables with inﬁnitelgy‘*‘ many values.
Buch variables present themselves naturally in mangy .é@es of the type of
Buffor’s needle problem which we had occasion tomention in Chap. VI.

On the other hand, even in dealing with sj;qel’ra:stic variables with a
finite, but vory large number of values, it ispf‘x&e‘:ri profitable for the sake
of approximate evaluations, to substituteg™or them fictitious variables
with infinitely many values. Among these the most important ones by

. . www.dbraulilrary.org.in
far are continuous variables. K l‘ J-org

CASE OF OUNE VARIABLE

2. Beginning with the caix.ﬁ%\of a gingle continuous variable z, we must
asswime that its range ofarfation is known and represented by a given
interval (a, b), finite on infinite. The knowledge only of the range of
variation of z would@et enable us to consider  as a stochastic variable;
to be able to do so, We must introduce in some form or other the considera-
tions of pro agbi;lity. For a continuocus variable it is as unnatural to
speak of the%vébability of any selected single value, as it is to speak of
the dimeusiph of a single selected point on a line. But just as we speak
of ﬂlaslézﬁg’th of a segment of a line, we may introduce the notion of the
proBubflity that z will be confined to a given interval (g, d), part of (g, b).

In introducing this new notion of probability in any manner whatso-
ever, we must be careful not to fall into contradiction with the laws of
probability whieh are assumed as fundamental. 'To this end, if P (e, d)
is the probability for z to lie in the interval {c, ), we are led to assume

1° Ple, d) Z 0
2° P(a, b) = 1.

The first assumption is an expression of the fact that probability
¢an nover be negative. The second assumption corresponds to the fact

that z eertainly assumes one out of the totality of its possible values.
235 "
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Next, if the interval (¢, ) is divided into two adjoining intervals
(e, €) and (¢, d), we assume

8° P(c, d) = P(c, &) + Ple, d)

in conformity with the theorem of total probability.

For continuous variables it is furthermore assumed: 4° for an infini-
iesimal intcrval (¢, d), P(e, d) is also infinitesimal.

Propertics 3° and 4° show that P(c, d) is a confinuous function of
and d and that N\

Ple,e) = 0. O\

In other words, the probability that z will assume any given(3glue is 0.
At the same time P{ec, d) represents the probability of any f)xiﬁ of the four
inequalities g

O
c <z <d; =< d; c<r =2d; N8sz=d

3. A simple example will serve to elarify these.general considerations.
A small ball of negligible dimensions is madae %" move on the rim of 4
circular disk. It is set in motion by a veheent impulse and after many
complete revolutions, retarded by frict-iqu ahd the resistance of the air,
comes to rest. The variety and compléxity of causcs influenecing the
motion of the ball make it %ﬂ‘“ﬁggégf{f%oafgfg}sgé%-he final position of the
ball when it comes to rest and thesfBole phenomenon bears characteristic
features of & play of chance. The stochastic variable sssociated with this
chance phenomenon is theﬁis}ance frem a ecrtain definite point on the
rim (origin} to the final position of the ball, counted in a definite direction,
for example, clockwise, This variable, when we consider the hall as a
mere point, may ha¥rany value between 0 and the length of the rim.
The question nowsasises, how to define the probability that the hall will
stop In a specifiéd‘portion of the rim, or else that the variable we consider
will have a_ §§1{e belonging to a definite interval, part of its total range
of variatioms " In trying to define this probability, we must ohserve the

fundaréntal requirements set forth in Sec. 2. Besides that, we must of
necésgifly resort to considerations which are not mathematical in their
nature but arc based partly on aprioristic and partly on experimental
grounds. Suppose we take two equal arcs on the rimm. There is nothing
perceptible a priori that would make the ball stop in one arc rather than
in another.  Besides, actual experiments show that the ball stops in one
arc approximately the same number of times ag in another, and this
experimental knowledge together with aprioristie considerations suggests
the assumption that we must attribute equal probabilities to equal ares,
irrespective of the position of the arcs on the rim.  As soon as we agree on

this assumption or hypothesis, the problem beeomes mathematical and
can eagily be solved,
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Before proceeding to the solution, a remark on the meaning of zero
probability in eonnection with continuous variables is not out of place.
Zero probability in this case does not mean logical impossibility. We
attribute zero probability to the cvent that the ball will stop precisely
st the orvigin. However, that possibility is not altogether excluded
so far as we consider the origin and the ball as mere points.  The question
lucks sense if we deal with a material ball and a material rim, no matter
how small the former and how fine the latter,

4. A stochastic variable is said to have uniform distribution of
probability if probabilities attached to two equal intervals are egqual.
This means that P(e, d) depends only upon the length d — ¢ 5 3 ofthe
interval (¢, d) and accordingly can be deneted simply by P(s) Com-
bining two adjoining intervals of the respeetive lengths aand ¢ into a
gingle interval of length & -+ ¢, according to reqmremé\n{: 3%, we must
have

(L) P(s + &) = P(s) + P(s")o

Suppose now that the interval (e, b) of the lenéth b — a = [, represent-
ing the whole range of variation of z, is dw‘xdc-d into n equal infervals
of the length I/n, The rep{;rat( gpgdgﬁj,]rt_a}?n of eqﬁuat;on (1) gives

i
o ()
But by requirement 2° P(I), z;x\l and hence
E\Y
R : 2 P(_z.) = 1.
N k2 [
Again, repeg,t@a‘ﬁpi)lication of (1) gives

,(%u
A\ p(ﬁ’:’f‘;) S
AN 7 n

for a}&’§1;t-eger m < n. Now let ustuke any intorval of length s, For an

. m . .
appropriale m it will contain the interval EE and be contained in the

interval 7 + 11; hence, referring to requirements 1° and 3°, we shall have
n

while
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ar

m—l—l_

n

<

2|3
1A
b

Sinee P(s) and s/I are contained in the same interval of length 1/x,

Pls) — 7 <?-1z

and this being frue for an arbitrary », no matter how large, it follows that
P@s) =7 4

Thus for a variable z with uniform distribution of p.fn‘(f:i.bility, the
probability of assuming s value belonging to an mt.mfvé.l of lenglh & is
given by the ratio of s to the length [ of the whole range of variation of z.

b. In the general case, when we eannot assumethe uniform distribu-
tion of probability throughout the whole ran @t variation of x, we let
ourselves be guided by an analogy with a niass distributed continuously
over a line.  In faet, the distribution o’f.‘al thass satisfics all the reguire-
ments set forth for probabilityyminiiretgslarithe mass Am contained
in an infinitesimal interval (z, 2 -+ ;33} Is also infinitesimal and the mean
density N

N \ Am

\\ Az
is generally supposed toytend, with Az converging to 0, to a limit called
“density at the poiad/z.” T this density p(z) is known, the mass con-

tained in any intezval (c, d) is represented by an integral
7\

R N\ [oaz.

E@lﬁlé\w'ing this analogy we admit that the mean density of probability

Piz, 2z + Az)
Az

*

tends ‘no a limit f(z) : density of probability at the point z when the Iength
of the interval Az tends to 0. Hence, again the probability corresponding
to an interval (¢, @) will be represented by the integral

Ple, dy = J:df(z)dz.

This expression satisfies all the requirements of See. 2 if the density of
the probahility f(z) is subject to two conditions:
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(a) J(z) 2 0 forall zin (g, b).
® (1@ = 1.

The sceond condition implies, of ecourse, the existence of the integral itgelf,
But in all cases of any importance the density is continuous, save for
disconlinuities of the simplest kind which do not cause any doubts as
o the existence of the above integral.

From the general expression of P(e, d) it follows 1hat for an infini-
tesimal interval (2, 2 + dz) the probability is given by f(z)dz negleciing
infinitegimals of a higher order. ¥or the uniform distribution of proba-
bility over an interval of length I the density is constant and =3/

In other cazes we cannot expect to obtain a definite expreéssion for
density unless the variable itself is sufficicntly characterized by addi-
tional conditions, cither hypothetical or implied by t-hrg’Qr'oblcm. Thus,
for instance, i applications of probability to problems of theoretical
physies, the physicists have succeeded in obtaining, definite probability
distributions. by invoking physical laws of a«kﬁi}ted universal validity
together with some plausible hypotheses. (N

6. The interval containing all possible ®alues of a stochastic variable
may be finite or infinite according to iﬁl}vt(”'r%a;%rle of that variable. How-
ever, in all cases we may take the largest PossiBle interval from — « to
+ o ; to this end it suffices to defingthe density outside of the originally
given interval as being = 0. {Then the density will be defined for all
real values of z and will sa@isﬁ}the conditions:

(o) . \y.(’z) = (forall 2

() o[-

Furthcr'more, theprobability for z to be in any interval (e, d) will be
&\

gvenby N
O [
In parti"uﬁi&, taking ¢ = — w and writing ¢ instead of d,
' o) = [* f0is
represents the probability that z will not exceed or will_ be }ess than ¢
Considered as a function of £, #(¢) is never decreasing and varies between
F(—o) = gand F(+w) = 1. It is called the “ distribution function of
probability.” In case z has uniform distribution of probability over an
interval (a, b) its distribution function is evidently defined as follows:
Fiiy =10 for t_ <a
F(t)-:z__f; for a=<t=bh
Pty =1 for t > b
Its graph is shown in Fig. 1 on page 240.
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7. The definition of mathematical expectation can easity be extended
to conlinuous variables; namely, the expectation of & or the mean value
of z is definced by

B(x) = f " o (@)

provided this integral exists. Similarly, the mathematical cxpectation
of any funetion ¢(x) is given by

Ho@)] = [ o@it)d- A

Of course, the existence of the integral in the right member is p}‘,&:\%ﬁp};vose(l :
again. When this intogral docs not exist, it is meaningless to/speak of
the mathematical expeetation of ¢(z).
i _ The mathematical %pénta.tion of the
-0 a & +oo power z* with pogitive integer exponent
Fiz. 1,

is called the ?@mmt of the order n or

nth moment. We shall denote it by m,, so, th&t

My = f y “f(z)dz

The dispersion D and the ‘s‘t‘ﬁﬁ’c&li'ﬂaﬂgﬂz?ﬁ%ﬁ‘eﬁ“:ﬂ are defined in the same
way ag in Chap. IX; namely, R\

D=g=Ex - ml) f (z — m)Y(2)dz = me — ml.

Often it is advisable to\c\mlsuier the mathematical expectation of jz|*
where o may be any, real number, ordinarily positive. This expectation
is called the “absc)hﬂ;e moment of the order «.”” Ifs expression is
t\n
O = [ lief()de,

and it is'ei:t:ident that

r . D

77N 3 “"

s

Mo = fhop, |m-za+1| Hekq 1.
The mathematical expectation of the funetion

en!,:c

where t is a real variable, is of the utmost importance. It is called the
“characteristic function” of distribution and is defined by

o) = [° efle)de.
Bince f(2) =z 0 and

[ sz =1
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the integral defining off) is always convergent and
lo(®)] = 1.

The distribution is completely determincd by its characteristic fune-
tion, Bceause by the Fourier theorem

1{" "
o wdtf_ me“("’{f(z)dz = f(x)

at all points of continuity of f(z). But the left-hand member is N\
%f olDe—itedy . \' \\
by the definition of ¢(f) and so ;"3}, T

1@ = g | et N

8. To illustrate the preceding general explanagiofis we shall now con-
sider a few examples. A\

Exzample 1. lLet z be a variable with uniforhi .’d’iét-rib'ilﬂ()ll of probability over
the interval (0, I). The density of thig distribution being constant
www.dbraulibrary orglin

RN
I E?»).’F’l—

3

the mean valuc of # is

and the sccond moment £\

,
\¥; 2
2& mﬁfﬁ:ﬂ.
:t\"’ . o 3

Hence, the squm{a‘ﬁhe standard deviation
O o
."\.f':" at = My — .mf = __1_5
/9N 3 “': . . .
This Simple example may be used to illustrate & remark made a_t the b(‘:gmnmg‘of this
chaptery that sometimes it iz profitable to substitute for a varable v?lt-h'a innlte bgt
large number of values a fetitious continuous variable.  Suppose that in ﬂlpplng a.coin
# times, we mark heads by 1 and {ails by 0, thus obtaining a sequence COMPTISING 7
units and zeros altogether, disposed in the order of trials. This sequence may be cen-
sidered as successive digits in the binary representation of a fraction:

el o n
X = e -+ —
2+4+ 2

contained between 0 and 1, X may be considered as a stochastic va;ria.bl_e with 27

valies each having the probability 1/27. The probability Ti(z, £) that X will be con-

tained in the interval (e, £), or more definitely that X' will gatisfy the inequalities
a<XEP
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is obviously obtained by multiplying the number of integers N contzined in the limits

e < N £ 278
by 1/2%, Now there are exactly
[2°3] — [27a] = 2°(8 — &) + §; —l<o<1
such integers; hence
p— 6 .
H(“:ﬁ)_ﬁ‘_ﬂf'{"; ~

If n is even moderately large, this probability is very near to the probs,bili@\
Pla,f) =f — a O

that a fietitious variable = with uniform distribution over the iftetyal (0, 1) will

assume a value in the intcrval (o, 8). The first two momentgof the variable X are,

respectively AN

04+314+24 -+ 422 -1 1 \
M1= 2?1& =§—‘\’21-%¢
M—02+12+22+”'+(2“”1)2:1 i 1
P Qin ) W 3 2h1 T omn

and differ little from the respective moments 24 and 14 of the fietitious econtinuous
varisble. Without losing anythinglee SHHET OB gain considerably in sim-
plicity by substituting a fictitious contﬁtitnus varizble for the discontinuous varable

X. - : A
Example 2. A thin bar canxdlate freely about its middle point P, Tt is sch in
motion and after several revo]@i.oﬁs comes e a stop pointing toward a peint X on a
line & “Fhe position of the bar is determined by an angle ¢

'\f i‘orrgeci by itself and the perpendicular PO dropped from Poni; 8

Lf “~ V&NES between the limils —w/2 and 7/2 and its distribution is
o X { upposed to be uniform, The position of X is determined by
Fig. 2. _ o~ @ distance OX = z from 0, this distance being positive or nega-

 tive sccording as X is to the right or to the lefi of {ho point 0.
It ig r-equjreds% find the distribution of the probability of . The relation hetween 8
and zis O
AN
~\/ T =atgd
if OP\& a or, conversely,

9 = arc tg ~
e
By differentiation we find the relation between d6 and dz:

adi
a? + z?

Now, by hypothesis, the probability that ¢OPX will be contained between § and
9 -} deis
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And the probability that the distance of X from O will be eontained between z and
¢ + dz (s the same. Hence, the dengity of probahility for the variable z is

1 11
1@ =t
and the probability corresponding to a finite interval (¢, d) is given by
d
1 dz
Pe, d) = f T
TJe @ =S 2\
Tor the whole range of variation of 2 : A L
: ¢\
1{" ad N>
- = 1 s N
T J_ wa? 422 ,.,}‘
ag it should he, Tlowever, we cannot speak of the mean value of & ér of ;noments of
higher order, since the integrals X ."\\

® xdx . " w’dz,ew\\;
- =a? + 27 _waz—i—x”\\

have no meaning. But the characteristic function ?p(t‘) exists and is given by

N/

@t} dw'wfdbl:atﬁi ary g in

P s

One of the most amport‘aut distributions (theoretically sand prae-

Ezample 3.
tieally) is the so-called Gaussian’? S “normal” digtribution. The density of this
distribution iz given by ¢ J

\ flz) = Ke—tie—a)®

with three parameters) R ,&, However, only two of thesc parameters are inde-

pendent, since we mw\ have
$

0 3"\.“ EY L
f .@}d« = Kf Py = Kf eIy = Kf =1
= - o — =

thnce :..\*'o
“\./

N X -

and finally

-

= _h_ ~htz—a)?
H {2) \/—3

To find the meaning of @ and k we observe thab the mean value of our variable is

A “ p e, -—k’b—-n)’dz =a
—= Bl —“)’zdz—-— (z — a)e ™ “)dz—l— f
v e B v:

singe

fw {z — a)eghteadz = fw ue iy = 0.
— -
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Thus ¢ has the meaning of the mean value of the normally distributed variable 4
The square of the standard deviation is given by

h = k * 1
2 il ei ¥, o gide = —— —hhelgade o=
¢ \/;J‘—- we ¢ @ ‘\/;J‘— me o 2R*

whence

_ 1
/2
Thus for the normally distributed varigble with the mean 2 and standard devidtion «
the density of probability is A o
28N
_l—ar o\

i P y

f@y = I \

Tinally, for tho variable ¥ = # — ¢ with the mean value ( a;lr{'the ‘same standard
deviation, the expression of density takes the simplest form s\~

W,

22
gt \

AT

and the distribution funetion of probability is rppreécnted by the integral

fay =

NS 22

) =

b
Y NPz
W W dbkg_J‘ irargy . org.in

e

The curve of density

5

” x"‘\} ‘\/_w
or the probability curve ha}a bell-shaped form as ghown in the figure corresponding
A\, io ¢ = |, It has a single maximum corre-
A } J sponding to £ = 0 and on both sides of this
Ab z ruaximum 1% rapidly spproaches the  axis.
\EIG 3. _ The characteristic function of normal
distribution has a very simple form. By

definition 4 \

” \':\' ' et f e 2"’23“‘dz
\ } \/_,

But as
- i
f e~ cos fudr = \/Ee 2 (x>0
— «

oL

ety =¢ 2.

The moments of normal distribution (with the mean = 0) can now be easily found.
From the definition of the characterisiic function it follows that

P (dw(t))
" im0

we find that
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ot 1 fo2\? 1 P
Ho=1——2 44— Yp <
o =1 -2 +1_2(2)¢ 1_2’3(2)3‘% ,
whenee

(i) A2t
( dzﬁif‘)f:n =0; {-1I¥ (%)!_0 =1-3:5-- (2% — L)

Thus

[n our case

Maryl = 0 '\
Mg =1 -8 -5+ (2 — 1)g%, .
)\
CaseE or Two OrR Mogr VARIABLES PR

9. By analogy it is easy now to extend the notion of prebibility to
two or more varinbles considered simultanecusly. A phir Jof special
values z, ¥ of two stochastic variables X, ¥ will be rep’xe'sénted geomet-
rically by a point with the coordinates z, y refertedito a rectangular
system of axcs. The domain S of all the possible walties of X and ¥ will
be represented by a portion (finite or infinite) o plane with a definite
boundary unless this domain coincides with ‘the wholc plane. The
probability that the point z, y should bélohg to an infinitesimal area
dady will be cxpressed by the preductegle, ») dedy where the function
ez, ¥) is again called the dé}{l\gi%y%%?‘:) ga%i‘?ig;géltﬁlthe point z, y. The
density of probability must sa-tiﬁsfg? \{two requirements: it is non-negative

in the whole domain § and \

ffota, wdedy = 1
N TS

whare the double infeéral is extended over all the domain 8. The
probability for thﬁipbint x, ¥ to be located in a given domain ¢ is then
given by the Qf?g'ral
O\
™3 ff@(xs y)dxdy

AN ,
extedda"over o. _

I (e, ) is a constant in S, the distribution of probability ig called
uniform. The domsin S in this case must be finite and if its area is
denoted by the same letter, then

1
(p(a":, y) = 'S'

The probability for the point z, y to be within the domain ¢ will be given

hy the ratio
[

8

denoting the area of the domain o by & again,
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10. We can always substitute the whole plane for the domain §.
To that end it suffices to set

(P(x! EJ) =0
in ail points not belonging to 8. We shall then have
‘P(:r’r y) z 0
everywhere and
N\
fﬂ:f_:';o(x, yidedy = 1. A\

By doing so we have the advantage of stating results in a perfectly goneral
form without mentioning the domain S. However, ifivdenling with
particular problems, it is more convenient to considergnly those points
which can actually reprosent simultaneous valféd“of the wvariables.
The probability of simultaneous inequalities

a<z<b c< g(é d
according to the general defmition is repre&ented by the double integral

wrfy &a@py@dgxdyg in

This corresponds ta the compqund probability of two events and we nust
see that the fundamental thigerem of compound probabilities continues
to held. Taking ¢ = '-.—{5, d = 4= the repeated infegral

SO e ole, pay

4 A ¥
represents the probability P(a, 3) for the variable X (as if it were con-
sidered alo:K"Wi’thout any reference to ¥) to have its value in {(q, b).
The function

T
&

o) flz) = f_ww(p(x, ¥)dy

represents the density of probability of X. Thus
Pla, b) = f “f(z)dz.

In a similar way
P@) = [ oo, vz

represents the density of the probability of Y; and the probability Q(c, d)
that this variable has its value in (¢, d) is given by

e, & = [ Fay.
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Now the doublc integral
b o
[ [ oo, vyaaay

gan be written in either of the forms

[ f et wwdy = [ [ @y
[ f et pazty = [Fay- [

where A
A\

ST AP KL
[ 1wy f: PO

may be considered as densities of conditional probabilittibg, respeetively,
for ¥ when it is known that X has a value ia (g, b)\agd for X when it is
known that ¥ has value in (e, d). The precgc,fm@' expressions for the
probability of the simultaneous inequalities (<N
a < x <b c<:gi’<d

have the same form as the t-lw&mhhruﬁl@mﬁmmné,pmbabﬂity and may be
considered as its extension. The gonditional probability for ¥ to have
its value in (¢, 4) when it is known ‘that X has its value in (a, b) is given by

d
Of .
L™ .

Now, we define varﬁaﬁés X and ¥ as independent when the proba-
bility for ¥ to be in (qi’d} is not affected by the knowledge that X belongs
to {a, b}, which me\’ajns that _

O\ ] d
N R = [Fow

2 &

Fily) =

or R

4 ¢\’ ¢
\»‘\; W Lbj;d‘lo(m!_ y_)da’:dy = J;dF(y)dy : J;bf(x)d&':
and, since intervals (g, b) and {c, d) arc arbitrary,
plr, y) = f@@) - Fly)

at points of continuity. Hence, the density of probability for two
independent variables is a preduct of a function of z alone by a function
of y alone. Conversely, when this condition is satisfied the variablt?s are
independent. For independent variables the probability of the simul-
taneous inequalities

a<z<b

c<y<d




248 INTRODUCTION TO MATHEMATICAL PROBABILITY [Cmae. XII

has a simple expression

[li@as - [*Faay

which is the product of the probability for X to have its value in the
interval (&, b) by the probability for ¥ to have its value in the inferval
{¢c, d), In perfeet analogy with the eompound probability of two inde-
pendent events,

Finally, the mathematical expectation of any function ¢{z, ¥) can be
defined by .
(NN

E(\"‘(% y)) = f_:f_:\f/(ﬂh ¥ elx, yidedy ' ‘\

R

provided the infegral in the right member exists, ‘

11. Tt 1s hardly necessary to dwell at length upegitke case of several
" stochastic variables. A system of particular valdes ©(, Za, . . . Zp Of
n stochastie variables X, X, . . . X, may be gonsidered as a peint in
n~dimensional space. The density of prﬂbgﬁ@iity is a non-negative func-
tion @{zy, s . . . 2,) defined in the whole space and satisfying the.
condition _ R

J‘m fu . ww_dbraulffg‘t';ﬁ'y.or in

" ol@s Tos - - wdades - dey= 1

The: probability for a point J:éprésenting X, X5, ... X, to be located
in & given domain ¢ 18 gi};en\by the integral

: ff .“::.F;(xl, Tz, .. Ta)drudza .. di.

extended over o{ »In the case of uniform distribution of probability,
e(T1, ®ay . . oda) 18 by definition a constant in a cerfain finite region
. of space a.t\{d”éo outside of that region, If V is the volume of that
region al’y:;i v the volume of the domain o, the ratio »/V gives the proba-
Lility tiiat & point belongs to o.

\'Bh'e probability of the simultanecus inequalities

ay < 21 < by By < e < by} ... B < n < ba

is given by the integral

By fBa B
A L o2, 2a, . .. Taddadzs . . . dza

which, by introduction of the conditional probabilities as in the case of
two variables, ean be put into the form of a product of % integrals in a
manner perfectly analogous {o the oxpression of the prohability of a
compound event with n components. Finally, the variables are inde-
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pendent if the density ¢(zy, %, . . . z.) i8 a product of n funetions
depending only upon i, z, . . . &, respectively, and conversely.
The expression

B(ey o -zl = [ 7 [T petndas - - - da,

serves fo define the mauthematical expectation of any function ¢{z,,
Toy v o o Tu) of 2o, o, L Do

12. Since in introducing the extended idea of prebability we toak\
earc to preserve the fundamental theorems of the caleulus of probability,
we may be sure that other theorems derived from them will héld/for
continuous varinbles. In particular, theorems eoncerning mat-hb::\natical
expectation and the fundamental lemma in Chap. X, Sec't\ hold for
continuous variables. Upon this basis as we have scenfas built the
proof of the law of large numbers. Hence, this im’jiarta.nt theorem
applies equally to continuous variables, O '

GROMETRICAL PROBLEM\{ \

13. A few geometrical problems will afford\a good illustration of the
foregoing general prineiples. o+

Problem 1. A rectilineaw\segému{_ﬂzlis(-di‘@ded by a peint € into
two parts AC =q, OB =1, Poinf.é{'X and ¥ are
taken at random on AC and OB, regpectively. Whatis
the probability that AX, XV, B¥ can form a triangle? .

Solution. We must fi s{faﬁgmc upor: the meaning of the expression
“at random.” The idca @ggeated by this expression jmplies that the

R " way of zsélecting points X and ¥ gives no preference to
any p‘g“}‘nt of AC and (B, respectively. Consequently,
va,rja\,}*_{ieg} = AX and y = BY may be assumed to have
{miform distribution of probablhisy: The. C-Iomam of the

\\point z, y i a rectangle OMPN with the sides OM = @,
0 §MQ ON = b. In order that 4X, XV, BY canforma triangle

]\‘52\‘?‘" the following inequalities must be fulfilled:

r<{oa+b—s—y +v¥ or r<at+b—zx

y<@+b—z—y +z o y<atb-y
at+tb-—z—y<z+y

——t——t—t
A x¢ y B
Fig. 4.

These inequalities arc equivalent to

a+b ¢ +b atb
2 -3 Yy < '—2—:‘ x + y > 2

To interpret them geometrically through P draw a line QPR n.:laking
€RQO = 45°. Trom the mid-point of QR drop the I?erpcndlegl'ars
VS, VW on 0X, OY. Then the preceding inequalities limit the position

T <
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of the point z, y to the shaded area SVW, whose part T8I/ is contained
in the rectangle OMPN. Variables x and y are independent and have
uniform distribution. Hence, the density of probability of the pait
z, ¥ is constant and the probability that the point z, ¥ is in the triangle
T8U will be :
Area TSU 306 10
Ares, OMPN ~ ab  2a _

At the same time this is the probability for AX, XY, BY to form a
triangle. _ )

Problem 2. On a line 4B two points X, X, are taken gt random.
What is the probability that AX,, X \X,, X»B can form a fighgle?

Xa (’ N
C 4B
\.
pid Ay
A B .
Xy Xz DY -
F1u. 6. W

Solution, Variables 4X, = x4, 1’1’Xé"£ z3 are independent and have
uniform distribution of m@hﬂ@ﬂiﬁlﬁw_&i{gﬁwin of all possible positions
of the point &), «s is a square with the side AB = 1. Positions of this
point when AX,, XX, X,Bform s triangle can be characterized as
foliows. First, if X, precgc@s X», we have

Ty — 21 S+ 1 — @ or Ty — ) < %
;1:‘1'\“<"xz—x1+l—xz or x1<E
Ke 3
\:"}’l—xz <x— a4 Loy or 7>

Which' ,l'lq'é.ans that 21, z, belongs to the triangle OPN , the definition of
which is evident if L, M, N, P are mid-points of the sides of the square
ABCD. Second, if X; follows X, we have
{
$1‘—I2<§; x2<£§; x1>%
and these inequalities define the area OLM. Sinece the distribution of
#1, &3 is uniform, the required probahility is

Aﬁa OLM + Area ONP i1 1

Area ABCD Y

Problem 3. A chord is drawn at random in a given circle. What is

the probability that it is greater than the side of the equilateral triangle
inscribed in that civele? o
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Solution 1. The position of the chord drawn at random can be deter-
mined by its distance from the center of the circle. This distance may
vary between 0 and E, the radius of the circle. The chord is greater
than the side of the equilateral triangle inseribed in the circle if its dis-
tance from the ccnter is less than 14R. Hence, the required probability

_IR_1
=F "y
Solution 2. Through one end of the chord, draw a tangent AT
The angle ¢ varying from 0° to 180° determines the position(of ‘the
chord. If it is greater than the side of the inscribed equilat-
eral triangle, the angle ¢ must lie between 60°.4nd 120°.
Hence the answoer ~ R

_120° — 60° LN

Fra. 8. pe 180° ~3
The faet that we obtain two different numberﬁ’f‘e\r’ the same probability
scems paradodeal, and the problem itself s known as “Bertrand’s
paradox.” However, going attentively o¥er both solutions, we discover
that we are really dealing with twq"d'iﬁercnt problems. In the first
solution it was assumed thatwibiel bitttlitornef ¢hg.ichord from the center
has uniform distribution, while jithe second solution the distribution
of the angle ¢ was taken as wmifprm. The sceond solution may be con-
sidered reasonable if a thimsbar or a necdle can rotate freely about A
and if, being set in motigh,'{t determines the chord AB by its ultimate
position. On the othemhand, the first solution is acceptable if a circular
disk is thrown upers board ruled with parallel Jines distant from one
another by the diamicter of the disk. The interscetion of the disk with
one of the linesdetermines a chord, and the probability that it is greater
than the ajé'\“of the inscribed equilateral triangle can reasonably be
assumed.tt'fy, be 1s.

A gé\iéral remark applies to all problems of this kind. When 2
cerfuin geometrical clement, such as a point or a line, is supposed to be
taken at random, it should be clearly indicated by what kind of
mechanism this is to be done. Only then the hypothetically assumed
distribution can be plzt to an experimental test and either confirmed
(appl'oximat.ely) or rejected.

- 14, Buffor’s Needle Problem. A board is ruled with equidistant
- parallel lines, the width of the strip hetween two consccutive lines being
d. A neodle so fine that it can be likened to a rectilinear segment of the
length I < d is thrown on the board. What is the probability that the
needle will intersect one of the lines (naturally not more than one)?

Solution. This is the oldest problem dealing with geometrical
Probabilities. It was mentioned by Buffon, the celebrated French

¥ij
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paturalist of the eighteenth ecentury, in the Proceedings of the Parls
Academy of Beiences (1733) and later reproduced with its solution i
Buffon’s book “Issai d'arithmétique morale,” published in 1777, .

Let us determine the position of the needle by the distance OP = zf
its middle point from the nearest line, and the acute angle ¢ between OP
and the necdle. Variables # and ¢ may be considered as independent.
Furthermore, = and ¢ vary respectively between 0 and 14d, and 0 and
#/2. As a hypothesis wo assume the distribution of pl‘obability\for

X
—H i O
i), O
Fia. 9. Fio. 1007 ’

2 and ¢ as uniform. The domain of z, ¢ is 3 pé’q}k;ng}e OABC with
04 = /2, 0C = d/2. Now, the necdle interseets*one of the lines if
| T
x < 5 CO8 <p\
and then the point z, ¢ lies in the sha&,e(f area below the curve
www.dbraul paty.org.in
.c=—2- 208 -

Since the distribution of :{»réy:is uniform, the required probability will be

7 Area 04D
ne Area OABC
But N
I *
:"\s. l 2 t
~f¢§“ Area OAD = 5 0 cos pdyp = 3
Ay Area OABC =T .2
~\ 22
a}i consequently
_2
T wd

On pages 112-113 an aceount was given of experiments made by several
authors in cotmection with Bufion’s problem. They all show gooed agree-
ment with the theory and indirectly confirm the hypothesis assumed
deriving the above expression {or probability.

156. Extension of Buffon’s Problem. A thin plate in the shape of &
convex polygon, of dimensions so small that it cannot interscct two of
the lines simultanecusly, is thrown on a board ruled, as in Buffon’s needle
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problem. What is the probability that the boundary of the plate will
intersect one of the lines?

Solution. Buppose that the polygonal boundary has five sides.
Let thesc sides (and their lengths) be denoted by

o, B, v, 6 e

Each of them is shorter than the disfanee 4 between two econsecutive
lines. On account of convexity, a line can intersect either none or tn{o
{and only two) sides. Accordingly, combining sides in pairs, wesban
distinguish 10 mutually exclusive cases and denote their probabilities by

(a8), (), (), (ce), (BY), (B9), (Be), (v9), (ve), (ieh)
The required probability will be given by the sum Wy ‘ b
p = (a8) + (ar) + (@) + (a) + (B7) -+ (B8) + (BT (1) +

. N 69+ G

On the other hand, the side o« can be intersecpqc(b}r a line in four mutually
exclusive ways; namely, together with 8 onJy, br 8, ore.  Hence, if (o) is
the probability of intersection R \/

(@) = (o whbaalbrdaory (ae),

and similarly D
(B) = (B (By) + (B8) + (Be)
) = (ga>r+ (18) + (v3) + ()
(8), =[foa) + (86) + (&7) + (¢)
(5 (ea) + (¢8) + (ev) + (ed),

whence \4,

@+ B+ @@+ @ =2,
But AN\

#
2 &

\ 2 24
@&t ®=% W= O=5 0=5

and}or}lsequently
. ﬂt_+ﬁ+'l’+5+e_£

r= B " owd

where P is the perimeter of the polygonal houndary, Evidently this
result is perfectly general. Since it does not depend upon the number of
sides, by passage to the limit, it ean be extended to the casc of a plate
bounded by any convex curve, _

16. Second Solution of Buffon’s Problem. Barbier has given anot.hr:r
extremely ingenious solution of Buffon’s problem antfl o.f its extension.
Let f(I} be an unknown probability that the ncedle will intersect a line.
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Imagine that the needle is divided into two parts Fand I”. Evidently s,
line intersects the needle if, and only if, it intersects either the first or
the second part. Hence, by the theorem of total probabilities

@ =510 + 540,

whence, as in Sec. 4, we conclude

HORS
where € is a constant independeni of I. The whole question is Wow to
‘determine this constant. Barbier’s ingenious idea was toalet this
problem depend on the solution of another one: A polygenal ]\iﬁY'\(convex
or not) is thrown upon the board; what is the mathematlwi expectation
of the number of points of mtersectlon? The penmotelsof‘lhe polygonal
line ean be subdivided inta # vectilinear parts a1, @, £ @, all less than

d. With these n parts we can associate n variablt§ ¥i, =2, . . . &, such
that

z; = 1 1if ane of the lines 1@9}5661:5 e ¥
z; = 0 otherwise,

The sum RO

SWEW\-\:F H E'*f'af{jjﬂj:ﬂ:?'h}y'.oi' g’h‘n Ln

evidently gives the total numhéfodf the points of intersection. IHence
B(s) = BEM B@) + - - - + )

and, if p; is the probabl\hty of intersection of o; with one (a,nd only one)
hnc,

.\“"" Bz = pe
But, accordm.g% the previous result,
.'\'\\ ;= Ca;
Hg”{lpegjxge have & perfectly géneral formula
vV B = Cla+ ar+ -+ +a) = CP

where P is the perimetor of the polygonal ine.  The result holds for any
curvilinear arc {closed or not) as can be scen by the method of limits.
This formula applied to a circle with the diameter d gives

C-ad =2

since such a circle has always exactly two points of interscction with
the lines of the system. Thus we find that
2

=1
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and
27

JO) = —
as obtained before, For a closed convex line of sufficiently small dimen-
sions only two cases are possible: two intersections (probability p), or
none (probability 1 — p}, whence E(s) = 2p and

2r
20 = =
P=d ~
or .
P RGN
P=rd < >
in agreement with the rcsult obtained in Sec. 15. N

17. Laplace’s Problem. A board is covered with a get-of congruent
rectangles as ghown in the figure, and a thin needle’is
thrown on the board. Supposing that the needle is shorter
than the smaller sides of the rectangles, find the\g‘lzc}babi]ity
that the ncedle will be entirely containedyifyone of the

rectangles of the set. « \

Solution. Let AB = a, \{’1 wﬁb? bejey he sides of the I:ectangle which
contains the middle point of the 'ne‘e. &" To {engfhi'of which is

1@ <al <b).

Taking AB and AD for cogrdinafe axes, the position of the needle. is

determined by two coordinates z, ¥ of its middle point

and the*angle ¢ formed by the needle with the z axis.

b € We iy consider z, y, ¢ as three independent variables

I with. tiniform distribution of pmba]?ﬂity. The dO]El’lﬁ.ill

B " gilled up with all possible peints 2, y, ¢ 15 2

Fre. 12. A’%ﬁarailolepipedon

F1a. 11

Y

o

™

NS T T
LSO << 0<y<h —§<¢<§
and tBY distribution of probability throughout this domain is uniform.
To characterize the domain of points representing positions of the

Fi M
n c b £ .
{2 ] F X to
A A B
E J
Frg, 18. Fia. 14.

located entirely within ABCD we

middle point of the needle when it is :
by planes ¢ = constant and their

consider the sections of that domain
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projections on the plane zy. These projections are rcpresented hy
the shaded areas in Figs. 13 and 14 corresponding to positive and negative
@, Tespectively.

In Fig. 13

«PAB =¢; AP|BF|CE|DG

and AP = BE = BF = CR = DG = DH = 3}l
Similatly, in the second figure

LJAB = ¢;  AJ||BQCLIDS \
2 AN

and A = AK = BQ =CL =CM = DS = . O
The area of the rectangle PQES correbpondmg to these, two cages can be
expressed as follows: ,~.'

Area PQRS = (@ — L cos ¢)(b — lsin ¢) = ab = i'(“b\cm @+ a s ) +
\ \ =+ {* sin ¢ cos g,

Area PQRS = (g — L cos ¢)(b + Isin ¢) =.ab— (b cos ¢ — asin ¢) —
X x\ — {2 sin ¢ cos ¢

A\ W

Without distinguishing positive and negatwc values of ¢, we may write
www.dbraulibrary org.in

F(g) = area PQRS = ab - bfcos ¢ — ladsin ¢| -+ 33sin 24|

The volutne of the domasift representmg positions of the needle entirely
within ABCD is: O
\s,.'
s
v sf * Flo)o = wab — 21 — 2al + 12
A\ %/ 3

L D

while N
O\Y
O N/ V = nab
is the ?olume of the domain
\‘ 0<z<a O0<y<b, ~g<¢<g-

Hence, the required probability is:

e +d) -1
wab

and the complementary probability for the needle to intersect the
boundary of one of the rectangles is:

p=1

Aleth) ~

¢= wab
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Buffon’s problem may be considered as a limiting case whena = o
and, indeed, by setting & = <, we find that

_ 2
=0
in conformity with the result in Sec. 14.

These examples may suffice to give an idea of problems in geometric
probabilities. Sylvester, Crofton, and others have enriched this field
by extremecly ingenious methods of evaluating, or rather of avoidin
evaluations, of very complicated multiple integrals, However, fromthe
standpoint of principles, these investigations, ingenious as thefy dare,
do not contribute mueh to the general theory of probability. )

Problems for Solution N
1. A point X is taken at random on & reciilinear segment A5 £ whose middle
point js 0. What is the probability that AX, BX, and A candonh a trisngle? The
distribution of AX = r is assumed to be uniform. ’ Ams. 4.
2, Two points X1, X» are taken st random on ,é& =1 X
Assuming uniform distribution of probability, what is t\l‘ﬁg-.‘mathe- A

matical expectation of any power » of ihe distanté hovween X, Fro. 14

and X7 ;

B

s ﬁ; fz.'; Cdodrs 2
Wk 1.\ ﬂ:{‘ﬁm*yﬁmw_ = 4‘“"’—(.“ Tt
3. Three points X, X, X arc take@at'rémdom on AB. Whai is the probability
that X Yies belween Xy and X7 B
. Ans. W \adsuming uniform distribution of probability.
4, A rectilincar segment AB 13 divided into four equal parts
’\1\0=CO=OD=DB.

Supposing that the distzibsition of probabilily is symmetric with respect to O, let P
be the probability thatha'point selected at random on AB will be between €' and D.
A3gy”let © be the probability that the middle point betwecn
Amiﬁﬁb points seleeted at random will be between Cand D. Prove
1 GO\ 1 4 e .
Fre. 16.4 that > 5 .

Hinrg "Ehe middle point of a segment X, Xy is surcly between C and D if E (i)_ X
and X\za,ré in €0; or (i) X1 and Xserein OD; or (ii) X, and X; are on opposite sidos
of 0.

6. Two points X, X are chosen at random in a cirele of radius r. Assumin‘g
uniform distribuiion of probability, what is the mathematical cxpectation of their
distance? 4ns. Denoting the required mathematical cxpectation by M, we have

A = J; & 02”F(r, 8, 6")dods’

where

Pl 0,00 = [ [V o 200’ cos (0 — P)po'dede’.
Hence, varying r by dr .
AF = 2rdr 0’\/a'mmpdp
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and

2x
At M) = &ardr ﬁ J; "7 T pF — 27p cos wpdpdes.

By introduection of new polar coordinates the integral in the right member can be

exhibifed as
3 2r coe @ g 32
2 dw widy = -1-—6-3" cos’ widw = —r?,
_r a 3 L] 9
3 .
Thus ,
Fra. 17, dlrrtM) = 138y N\
whence A
2\
_ 1281' A\ e
451r M

P
6. A board is covered with congruent rectangles aa in Laplaﬂfﬂ’s problem. A cofu
the diameter of which is less than the smaller side of the rgg@,ﬁgles ig thrown on the
board. What is the probability that it will be partly inpung rectangle and partly in
another? Amns. a, b, r being respectively the sides of Khe véctangles and radius of the
¢oin, the required probability is

2r(a b - 21-):\“
ab

brayli bl"a .org.in
T. Solve Buffon's probihér\;; wgeg E::‘}Ju: weedie Bglonger than the distance between

two conzecutive linea. Ans. The prpbab]hty for the needle to inlersect at least one
line is )

”_, — 2w
A...;)t\-— 1I_d(]. sin @) + -

where ¢, is determined :by\}os o0 = 4L
8. A board is cayered with congruent triangles whose sides are a, b, e. A needle
whose length is leag€han the shortest altitude of any one of these ’mangk‘ﬂ 15 thrown
on the board. 'Wha.t i8 the prohability that the needle will be vontained entirely
within ong of‘blie’ triangles? Ans. The required probability is
O L (A0 4BV 4 OO (da + 4b + de — B0
N . 2wt 21}

\(hér"e 4, B, C are angles opposite to sides g, b, ¢ and ¢ is double the area of the triangle.
For equilateral triangles
2f 1} I/3
1 +_<...) —_ i(;} —_ _E)
3\e L0 a

'9' On ench of the circles 0y, Oy, 05, . . . with respective radii ri, 2, 7a - -
points My, Ma Ms, . . . are taken st random.  Supposing that the series

eyt
is divergent, while the series

2
IR SR
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is convergent, prove that the probability that the length of the vector

OM = O:M, + 0.0y + 0:M; + - - - + O, Mx

will be > R tends to 0 as B — « no matter how large » is.
Indication of Solution. Let @1, w3, . . . &a; ¥1, Y2, - - - ¥= be components of
OM,, OM;, . . . OM. ontwo rectangularaxes 0X, Y. Then

E(z) = B@ys) = 0 % A
2 @ @M

E@) = B@D = 5

Fra, 18.
N\
By Tshebyshefl’s lemma (Chap. X, Sec. 1) the probabilities @ and @’ of the inequalities
— 2\
2 2 $ .. [F .
1m+zg+---+a;]>t\/"‘+r"+”+ SINCIRS.
2 2‘,'.
: R Ry ' é
|y1+yg+'--+an>L\j 5 .:'{2
are both less than 1/i2.  Now, if the length OM > E then either
'\G

R ('L
[ w2+ - - - +¢m|>%‘;\t 3

or \ s
www.dbraulih’ljérﬁhorgj G
R +~.§;‘.}}> :/-_5- = z\‘];.

Hence, the probability P for the;ﬁenf;ih of OM to be > B is less than @ + &;
that is, A\
(\J 2
X P <Q+@ <gp
10. Prove that N
N\
1 0y 1 £ 2
tim .\:..f“””“"“ t e oday - - - e = 5
oW 0% F ot T 8

Hmr: Conai'&ri;lg Z, Tz, - . . Tn 38 continuous stochastic variables with unﬂn@
v ith the help of Tshebysheff's inequality

n= @

distribution Gver the interval (0, 1) prove wl

that the grobability of
N/ 2 R i . PR
LR e . T MM S PR
3 ozt a3

for any ¢ > 0 fends to 1 as » — <.
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CHAPTER XIII
THE GENERAL CONCEPT OF DISTRIBUTION

1. In dealing with continuous stochastic variables we have introdueed
the important concept of the function of distribution. Denotifl, the
density of probahility by f(2}, this function was deficed by o |

(NN
ry = [ iz O
and it represents the probability of the inequality 2
z < 1. )
For o variable with a finite number of \rahf@s the function of distribu-
tion can be defined as the sum \ v
WW W, dg (all‘ﬁpi;f?%rg in
N <l
where py, Pg, . . . Pa ale respect,we probabilities of all possible values
Ty, Tz .. . Tn of the varisble ». The notation z; < ¢ is intended to

ghow that the bummahon\m extended over all values of z less than &
Again; F(i) for any reK\f represents the probability of the inequality

x <.

In this case F (jSlv\a”discontinut)us function, never deereasing and varying
between F(-r\qo =0 and F(4+ =) = 1. Its discontinuities are located
at the pmi‘ts Ty Tz, . . . T, and are such that
) \y Flai +0) — Flz; ~ 0) = p,,

(Ké'ﬁgb’i'ng, in tho customary way,

Fx +0) = lim F(z: 4+ ¢

F(.T;‘f - 0) = lim F(x; — E)
when ¢ through pesitive values, converges to 0. To represent F()
graphically we note that

Fh=0 for t <z

F{t) = py for T < 1< &2
F(t)=p1+p2 for Ta < f < 3

FO=pi+pt - 4+p,  for = <t
260
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As for the value of F(¢) at the point ¢ = 2, it is F(z; — 0). Hence,
the graph of F(t) consists of rectilinear scgments as shown in the figure
fforn=421= 2z ==Lz =3p1 =D = p3 = ps = 34)
and belongs to the so-called step lines.

Thus, i case of a continuous variable the distribution function is
given by an integral, and in case of a discontinuous variable, by a sum.
In stating theorems cqually true for continuous and discontinuous
variables, it would be tedious always to distinguish these two cases.
The question naturally arises whether it is possible to represent distribu-
tion funetions, moments, and similar gquantities by using new symbels
equally applicable to continuous and discontinuous variables{ Mn a
similar kind of investigation Stieltjes was confronted with(‘tlte "same

N

. , &

—oa -7 0 1 3 oo
Fia. 19,

diffieultics and he succeeded in overcoming thé“h} by introducing a new
kind of integrals known as “Btieltjes’ integwl}”

S’l‘IEL‘T‘JLS INT{DG‘R.&LS

2. Let ¢(z) he a never decregsa&llg FenS6R ‘Qefined in the interval

¢ =% = b For any particular_ xralue of the argument both the limits
(for € eonverging to 0 through posltne values)

lim @ + ¢ = ola + 0)
Thg(ze — € = o(z0 — 0)
exist.  Since evidentlp
MWK
'\’ 'c.o(a:u — 0) (p(-’l?o) G‘-‘(xo + 0):
To IS 8 pomt{&&c’ontmulty of o) if
wlzy — 0) = @(zo + 0).
If} {E)\V;'é\.’cr,
olzn — 0) < olw + 0)

¢(z) is discontinuous at 2, and the difference
g — qo(xn + U) - Go(xﬂ - 0)

gives the measure of discontinuity or simply discontinuity. Since
for any number of points of dJscontmmty xo, %1, - . - % the sum of
diseontinuities

mg+m1+---+mn§¢(b);€°(a)
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the points of discontinuity form a countable set. For there are only 3
finite number of discontinuities above any given number, so that, con.
sidering the sequence

G0, >8> - -

tending to 0, there is only a finite number of points with discontinuities
>3; also a finite number of points with discontinuitics =8 and >3,
and so on. Tt follows that points of discontinuity ean bc arranged inte
a single sequence and hence form a countable set.

It may happen, however, that ¢(z) may have discontinuities i1 ‘any
interval, no matter how small; but at any rate there are pmn’m\of con-
tinuity in any interval. I ¢(zo + € > ¢(zo — ¢) for all suffiein nﬂ) small
¢ > 0 the point zo is called a “point of increase” of ¢(z), \ It particular,
any point of discontinuity is a point of increase. ..,( h

3. Let f(z) be a continuous function in the mtew{r} a=ax=b By
inserting points #1 < 73 < . . . < %, this interval iz subdivided into
7 4 1 partial intervals. In each of these w%a:rbltranly select poinis
£, £1, . . . £, and form the sum \

8 = f(&a}elr) — oo} + fE)p(x2) — ga‘(a:l)] + .
wwwdbrauh{m gry.m g.in + f(sn)[‘ﬂ(b) - (,9(&"n)

It can be proved in the Same‘Wa.vjf:' as for ordinary integrals that when
all intervals N\

xl-;@}‘xz—-xl,...b—x“

tend to zero unjfor:rnly,\t\he sum S tends to 2 definite limit. This limit,
called Stieltjes’ integtal, does not depend upon the manner of subdividing
the interval (e, B)of upon the choice of points &, £, . . . .. It has
a perfectly deﬁf.xte value as soon as f(z) and ¢(z) (together with a, b)
are given, s.gd accordmgly ig denoted by

?

> [lrdota).

\1;1 case ¢(z) has a continuous derivative, de(s) can be interpreted
as Fhe ordinary differential; Stieltjes’ integral then coincides with the
0rd1f1ary ene. In other cases de(x) is a new symbol introduced as a
reminder of the origin of Stieltjes' integral. In particular, if ¢(x) is 4

step function with diseontinuitics p,, ps, ps, . . . at the points 2
Ty, Ty, - . . , Btieltjes’ integral coincides with the sum
Zpif(x:)

which is a finite sum or an absolutely convergent infinite series according
as the set of points of discontinuity is finite or infinite.
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Sticltjes’ integrals possess many properties of ordinary integrals.
For instance, the mean-value theorem holds for them in the form;

[*1@iet@) = #D1e®) ~ o(a)

where ¢ = £ = b, Also, if f(x) has a continuous derivative, we have an

analogue for the integration by parts
[(iweta) = 10)e) - f@e@ — [ o@)df@) Q

where df(z) means an ordinary differential and the integral in thé_Bght
member is an ordinary integral. However, some important preperties
of ordinary integrals do not hold universally for Stieltjes’ in,tefgrs;ls. For
instance, considered as functions of b or a, they may have digeontinuities.

In the definition of Stieltjes’ integral it was assumied that ¢ and b
were finitc numbers. Stieltjes’ integral over the ihterval — o, 4o is
defined in an ordinary way as being the limit of o\

[reio 201

when ¢ and b tend independenglg to st and - =, respectively. In
www dbraulibfary .org.in
other words, NN

9
¢

Jos@aet) = lim [(T@age) Y oghen e -—w, botw,
provided this limit exists:\'\iI’f ti{; does not exist, the symbol
S0 [ f@e()

has no meaning. \ \
\T".\HE GeExERAL CONCEPT OF DISTRIBUTION
4. The, "fl'l\mst general type of distribution function of probahility,
covering‘s’aﬂ' imaginable cases, is given by a never decreasing function
F (i)\aé‘ﬁhed for all real values of £ and varying from F{— ) =0 to
F(+ & = 1. Tf at points of discontinuity we set

F(t) =F(t—0),
then for any ¢ the probability of the inequality
z <t
will be given by F(f). Also, the probability of the inequalities
hSr< it

will be
F(tz) - F(tl)-
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The case of continuous F(#), having a continucus derivative f(3)
(save for a finite set of points of discontinuity), corresponds to a con-
tinuous variable distributed with the density f({}, since

P = f_‘ _fm)de.

T F{t) is a step function with a finite number of discontinuities, it charac-
{erizes the distribution of probability of a variable with a finite number
of values. Finally, if F(f) is a step function with an infinito set of dis-
continuities distributed without density, it corresponds to a vahiable
whose values can be arranged in a sequence according to their phaghitude,
These are the most important types of variables considéred in the
caleutus of probahbility, and for all of them the dlstmbu‘uag function can -
be represented by Stieltjes’ integral K7,

N
F(6) =f‘ dF (z). R\

i
The mathematical expectation of ﬂ.Ily\Cf}IltlnllOllE: function f() is
defined by Stieltjes’ integral "N\

Evm@gm& @ﬁ@dgw

provided it has a meaning, Tnl parmcular, moments of the order i (ﬂf'
positive integer) and absolui¢ moments of the order « (« real) are deﬁned
respectively, by o)

P

,\\ i = f " pdF ()

NOT = [ ear
and we alwa.,ys;hz;ve
N e € e
Finally,
A .
O plt) = f_ _eit=dF (x)

is the characteristie func_tion of distribution. Since the integral exists
for any real {, this function is defined for all real values ¢ and satisfies the
inequality

e =1

INgquaLiTiEs For MoumENTS

. .5.. Moments of any distribution satisfy certain inequalities, which
it 18 impoertant to know. They ail are particular cases of the following
very general inequality due to Liapounoff,



9xc. 5] THE GENERAL CONCEPT OF DISTRIBUTION 265

_ Liapounoff’s Inequality. Let g, b, ¢ be three real numbers satisfying
the inequalities
azbze

(3%

0

and pa, ga, 4. absolute moments of orders a, b, ¢ for an arbitrary distribu-
tion. Then the following inequality holds:

BT S g

_ Proof. a. Let py, P2, . . . Pa; Ty, T, . . . T, be positive nunikiers
“and - Koy
ol = pt +paxg + - - - oz O
Then for arbifrary real numbers s, 8, . . . s, the follqmﬁﬁg‘:inequadity
holds: ”"'\'*
) p . v 4
. a 8
(D @(sl T & +p + ”) £ ¢(81)¢'(§f;\;’° - o(8p).
" For p = 2 this inequality follows inunedia@elj{from the known inequality
. due to Cauchy: RO

RWW ) brau!&;b;';ry'mrg.in

SIS
D A 1
by taking in it K
&\ 1 : o
an=wpz?, bi=VpaE.

" For p = 4 we have &) '
¢<s1 + 5 + P
%w’

and contifming in the same manner we find in general that
NS .

a\Y/ om
Q @(sl ot o ) < ploelss) - - - vlss).
Let m be taken so that 2= > p and let us take in the last inequality

s1+s+ - +'311.

A

@(S_r;—__fg)ztp(&%_‘;_i*)z = p(s1)e(se)elss)e(ss)

= s = B = 8=

Spr1 = 8ppa = P
Bince _
sit st hem Pt Erops_
- F——— = om

2m
we shall have
pla)™™ = eiselgel - - plsatp(8)t™ 7,
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whence
o(8)? S ols)e(s2) - - - ofsn),

which is inequality (1).
b.Lete 2z b = ¢ 2 0 beintegers. Takingp = a — ¢; 8= gy =

. = 8y =0 Sgmbit = + -+ = 8. = g, We have
31+32+"'+sa~s=(ahb)c+(b*c)qmb
a—c a—c ~
and consequently, by virtue of (13, \

KON

(2) (éﬂﬂ)ﬁmc = (iﬁif) (2}‘)@“) o- (..’}‘:.

It ¢ =p/e, b = g/s, ¢ =r/s are rational numbei‘s.\(a zbhzez ),
1

it suffices to take, in (2), p, ¢, r instead of a, )¢, replace z, by 2}, and

raise both members to the power 1/s to ascertain that (2) holds for

rational g, b, c. Finally, the passage to tholimit makes it clear that (2}

holds for resl a, b, ¢, provided a Z b 2.2 0.

¢. Let the interval Awto ﬁbbgugigp@pﬁeglmnto partial intervals by

inserting numbers #; < f; < - - ~<‘:t between A and B and let
po=Flt) — F(4), p = F(ta) —F{t), . . . pa = F(B) ~ F(t,)
zo = AN = b, . - 20 = .

Then the three sums A, \\

&~

O EW’;, ng Zmﬂ

will tend to\he respective limits

S

5 fwear, [ weare, fiiearc

) 3

when all differences A — &, & — ¢, . . . B — £, tend to O uniformly.
Hence, passing to the limit in (2), we get

()™ s ([uaro)™. (fuaro)

and finally, letting A tend to — o and B to + w0,
([ 1par@)™ = (J" larar®)™ - ( [ jwear ey ™

B S plhke

or
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as stated.

Taking b = E#, Liapounofl’s inequality becomes

whence

2
Mate & Meba .
Tz N

for any two real positive numbers ¢ and ¢. If % and I are two(positive

integers and we take ¢ = 2k, @ = 21, then N
N’
P2 2 umia N
or \\
My S Mullsi )
since . \
- AN
|mk+;[ = Bl and MBag = mz\ﬁ,;' Hap = Wi,

Another important inequality results ip\we take ¢ = 0. Then, since

No

e =1, ™
www_d%@‘%ary.org.in
or k- ‘; N
= S|
/4 b < 8
A\ Hy =Ry

s J
ifa>b >0 This an‘t@ants to

10{{ w o log ps s
NO=— === if ae>b

9.\
which is equ\i'v:’gient to the statement that
O\ v

Qt.

\ log u.

e z
RS

. Y . . [
is Andncreasing function of x for positive .

CoMPOSITION OF DIsTRIBUTION FUNCTIONS

6. An important problem in the caleulus of probability is to find the
distribution function of the sum of several independent variables when
distribution functions of these variables are known. It suffices to show
how thig problem can be solved for the sum of two independent variables.

Let z and y be two independent variables with the corresponding
distribution funetions F() and G{t). To find the distribution funetion
H{t) of their sum

z=z+Yy
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is the same as to find the probability of the ineguality
vty <i

for an arbitrary real number ¢, Here, for the sake of simplicity and in
view of the applications we propose to consider later, we shall assume that
one, at least, of the variables z, y has continuous distribution with
generally continuous density.

At first, let both z and ¢ have continuous distributions so that

QY
! £ -
F@i) = {x)dz; Gy = {x)dz. :
w=f7 y= [ PR
The probability of the inequality O’
zt+y<ti . (».;:

according to the general principles stated in Chap, XI‘I 18 expressed by
the double infegral

Ho = [ f(:c)g(y)dady

extended over the domain R
www_ab-h'@:&~ﬁy.org,in

Now, following ordinary rules, weh tan reduce this double integral to a
repeated integral. To this erﬁ, for any fixed = we integrate g(y} between
limits — w0 and f — =z, tl;lus,}}}) aining

Of owdy = Gt - @),
\/

Then, after mult;{plying by f(z}, we integrate the resulting expression
between limit "\-' 0 and -+« for z. The final result will be

O
Q) H@) = [ 6t - o=

:u\: -
or, ‘Q}iﬁén ag Stieltjes’ integral,

HO) = [ 61~ DdF ().

In the second place, let z be a diseontinuous variable with different
values z,, zs, 3, . . . and corresponding probabilities pi, s, P3, - - -
For z = z; the inequality

sty <i
is equivalent to

y<t—x.-
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and the probability of this inequality is G{ — z;). Since the probability
of & = &; is p;, the compound probabilify of the two events

r =¥
x4y <t
will be
p-x‘G(t - x,').
The total probability JI(2) of the inequality ~
rty <t , :
: ¢(\H
will be expressed by the sum N\
H@ = 2p6@ — ) AN

extended over all possible values of . But this sum c,aﬁ;é,gain be written
as Sticltjes’ integral: \¥;

. D
(1) H® = [ 06 - @

In both cases we obtain the same px@yéési'on for H(¢). Evidently
H{#) can also be defined as the mathematical expectation of G{f — z):

O

taken with respect to the vamiaBle z. The important formula (1) is
known as the formula for. €dmposition of distribution functions F(t)
and G(1). ) \" '

Esample. Lot # and gabe two normally distributed varigbles with means =0
and respective standarddeviations o1 and @ Instead of using {1}, it iz better fo
write H(t} as a dou}){e:ja\:f-égral

¢ \’ g 1 - %—-gi’-!,
W = 1 Tdedy
R \'§ H (t) ?Ara‘ 1Cl'2f ‘J‘G

extended,\a’\'fe"r the domain

4y <t

~\.
To &ul'uate this integral, it is natural to introduce  + y = 2 &8 & neW variable and
find constants C, D, a, § so as to have identieslly

r_"fg _{_y_z = Cfz + p)? + Diaz + By),

2oy 203

whence one eaaily finds

P S
T 9(e? + ¢3) 2¢ry(e] + o)
o= o g = —o}

and

2
2 v _1_,{ - (‘Ez . Ey) }
;ﬁ * 2e  2(e} + o3} S g1 a3
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The Jacobian of
z=z-+y w= g -
[ 51 o
with respect to z, y being
1 1
o L5 1 _ 0‘% O‘:
3t Ty - TiFe
H({l) ean be presented as the double integral ~
_ #ur
H(t e erted gy O\
® = 2x (o +%)ff ,\\“’
with the domain of integration defined by s single inequality: 4 ,,}‘ N
z <. ' " :
Hence, n\
e NN
H(i) f e 2(|tr|“z -I—cs:")dzf & 2(m® Fedy
2”"( a1 + of) ’“\n
or N\
1 TE ‘ N 22
H() = \ o Benteng,
\Avf grg; org.in
sinee N

o u"’ ¢ ’
f . z(ss-mﬂ)du = v/ 2n(e? + al).

EO
€ 3
L

The expression obtained for H{t) leads to a remarkable conclusion:
The sum of two nofmally distributed variables with means = 0 and
standard dev1at10n=3~al and o, is also 8 normally distributed variable with

the mean = 0 aﬁd the standard deviation ¢ = /o + ¢f. If the means
of xz and y ‘&{& ‘e, and s, then evidently z will be normally distributed

with the, m'e\an a = a1 + a; and the standard deviation ¢ = v/o% + di.
Repcatbd apphcatlon of this reqult leads to the following important

théo
S)" Ty, Ty, . . - ¥a are normally distributed independent variables with
MEANs @1, @y, . . . @ and standard deviations a1, a9, . . . ¢, then their sum
z=nid+ea+ - bz,

is again normally disiributed with the mean a = o, dar4 - s
and the slandard deviation ¢ = \/o} + a§ + - - - +F o2
Finally, any linear function

U = 121+ &9s + - -+ - + eculs

is normally distributed with the mean a = ¢.q, + etz + - - - A Calln
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and the standard deviation ¢ =+v/cled + o3+ + - - + %2 In
particular, the arithmetic mean .

sttt

ki

of identieal normally distributed variables with the mean a snd the
gtandard deviation # is normally distributed about the mean a and with

the standard deviation ¢/+/n. Hence, the conclusion may be drawn

that the probability P of the inequality \
7 ikl U ul L S R .o\:.\
7 N
is given by ("’f}‘ .
VA e = o (L w0
P= e ¥dy = —=—= eTﬁ}i
o\ 2m) e vVorJs

and rapidiy approaches 1 as n inereases. TI i$48 a more definite form
of the law of large numbers applied to norntally distributed (identical or

equal) variables. o M
www.dbraulibrary org.in

DEFERMINATION oF Di1sTrIBUTION WHEEN ITs CHARACTERISTIC FUNCTION
Is\GIvEN

7. One of the most impoftant conclusions to be drawn from the
preceding considerations isgt'h},t the distribution function of probability
is uniquely determin.ed\bs;' the characteristic function. The known
proofs of this fact arg fvather subtle, owing to the use of conditionally
convergent integralg’ However, such integrals can be avoided by resort-
ing to an ingenigus device due to Liapounoff. In the general case, the
distribution {dngtion of a variable = has discontinuities. To avoid the
bad effect @f\these discontinuities, Liapounoff introduces a continuocus
variable\q},’that, with reasonable probability, can have values only in the
vicimitJof 0. It may be surmised, therefore, that the continuous
dis‘r}ibﬁtion funetion of the sum @ + y will approzimately represent that
of  and, by disposing of a parameter involved in the distribution function
of y, will tend to it as a limit. To make these explanations more definite,
let y be a normally distributed variable whose distribution function is

qa@ = h_\l/—; :mewﬁdz.

When % is small, the probabilities of any one of the inequalities

Y > & g < —e
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will be extremely small and even will tend to O when ki tends to 0. Hencs,
the distribution function H({) of the sum x + y is likely to tend ts
F(f) as a limit when % tends to 0. .

To prove this in all rigor, we apply the composition formula (See, 6)
to our case. We obtain {the following expression for H{2):

hxl/; _:dp(x) f _’jg-:%dz

ar, in more convenient form

HE) =

O\
iz N
- 3 o
and furthermore, integrating by parts, N
H{) = (5 z) F(x)d:c '\'
\/; —
The integral in the right member can be split ‘iﬁtﬁ three parts
A5 &
f F(x)d:c Ve J;ﬂ; F)de +
AVES fary org.in
L5
oY F(z)dz.
Q + hﬂf . (

Now, for positive T

\[f e~*'du < e T

Makmg use of thig 4n’equahty, we find that

b= &
"o }F(:n)dx< f -5 da:=-—f il < 2
h\/“ ite \\“ ‘\/; [ £
andﬁg;mlarly
" (5, 1
\/_ B P(:r)dx<§e h
80 that

1 e lw . _w o
G =L [ Fp R — %
© h\/;J;e (& -+ W + fe F(i — wydu + b F;

1
h‘\/‘r_r o
p<o<l
Giiven an arbitrary ¢ > 0, the number e can he taken so small that

OSFE+w —Fi+0 <o
OSFE—0) ~Ft —u) <o
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for 0 < u < e, whence

1 e -5 F@ 4+ 0) [
Ao mrg - -
h\/;rj;e & + w)du v J;e dul < o

1 ¢ ¥ Fit — 0 i
— MR — w)d ut
h\/;ﬁe ( wdu \/; J; e ’duy

<@
and ) A
Ft+0) +F(t —0) (3 _e
If(t) — ( —I_ )‘\/; ( } | e + &\ 2 + e k’); ja\l\‘; l
On the other hand, R N
1 1 1 1 87 & '
ey = = — —= edy = = — ——e &Y 0« <1
\/EJ; 2 \/EI 229 ’ ’
1 #¥¢
Nt
go that finally P\

Pt #m-qbqa@;@;pgﬁgn ot

]H(t)

and for all sufficiently small & (e bémg kept fixed)

m\+ 0) + F(t — 0) _
H@) \ 3 | < do;
that is, O
A/ Fit+0) +FE—0)
Xim H (¢
p \ b @ = 2
or, if ¢ is &Q@\ut of continuity,
A lim H() = FQ).
o \ w 4 P .

ﬁ‘ow we must find another analytical representation for H . To
this end we consider the difference

HE) — HO) = — f P () f i,

z
3
and, to repregent in a convenient way the inner integral, we make use

of the known integral

-]
e—trig—ivedy = 7%

1
2‘\/‘; Y
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' Multiplying both sides by du and integrating between —;—: and t_..};__?

we find

Rl

-
- — i &
[ e du = —-f ‘*e“’“ .
V) _z i
k

Rty gt ~
H{) — H®O) = '—f dF(x)f L pinal T = T

\ s

and

The next step is to reverse the order of integrations, 41;\0perat10n
which can be easily justified in this case. The result mll bv‘

(

a hlgs .
H() — HO) = % ALy, J‘ szdF(:c)
OoT ‘
R _ gmint
7O - HO =5 | 4 w Lo,
singe ‘

www.dbra l:ﬁbf':dr“y.org.m
ol0) = f NP ().

Now, taking the limit of H{{) i for A converging to 0, we have at any peint

of continuity of F (i) ,\

1 i kx”g 1 —_ e—-we

\
(2) F{§) = \— = him e *pv) m——dv

2r p=0 Jo»

where the constan);;
;\ih O = F(+0) + F(—M)
\’\\w' 2
is detel‘mi:ned by the condition F{— ) = 0. Thus, the distribution

fun@troﬁ 15 completely determined by (2) at all points of continuity when
thE\charactenstlc function ¢(v}) is given.

Example 1. Let us apply (2) to find the distribution corresponding to the
characteristic fnnetion
o Zgt

elp) =e 2,

Since in this ease the integral whose limit we seck is uniformly convergenb with
respect to A, we find simply

1{" _‘.'f’f”_g] -
Py =C+5-| PRI
— w
n o gin
—C4 - 2 —av

IrJ_ w i
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On the other hand (Chap. VII, page 128},

L oty | + ut
——g&n v 2r | —as
— ¢ o

¥

so that

) ﬁd 1 Po_w
Figy =0 — e%u — ¢ 2odu.

vt It I
Taking t = — e, the condition F{—w) =0 gives

v O

and so finally C
1 ¢ = N
Fi = f e Zo'du. AN\ ¢

o 2r J_ ¢
-

KNaturally, we find a nermal distribution with the standard dewiation ¢ {compare page
2703, A) .
Example 2. What is the distribution determined by .\‘Qm characteristic function
olo) = o, a0

N i find »
8 in the preceding example we find t dgl aUltb]‘"al yorg.in

“  sin i
ro =0+t J' -mﬂil_‘;”a,, o+l ﬁ e

v

But
&:EJ'; e‘i“’%@&s = J{; ¢%% pos lvde = az—:—{’.
whenece ¢ '
f\%wsmwy=c_tf‘ dz SEJ“ de 1
. praEnp R
Thus A’i\w

.":3 1 n a ¢ dz
\: k@ = 2 aJ_ a2t
&ndXe condition F(— «) = 0 gives ¢ = }3, so that finally

af* dx
FO=2) e

Naturally we find the same distribution as that considered in Example 2, page 243.
Sometimes it is called *Cauchy’s distribution” with the parameter a.

CoMPOSITION OF CHARACTERISTIC FUNCTIONS
8. Having = independent variables z1, ®s, . . . Tn Whose charac-
teristic functions are ¢1(8), 2(t), - - - @a(t), the product

o) = el - - - e}
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is the characteristic function of their sum
s=nt+zat+ -+ + Ta
In fact, the characteristic function of s is by definition
ot) = E(e™) = Eeint - gimt . . . gt

Since z, ¥z, . . . Tx are independent variables, the cxpectation of the
product

eézls_eizgt e e . eixut £\

is equal to the product of the expectations of the factors, whentey’
A\

ey = p{®ea(t) - - - eald). O

O

This simple theorem is of great importance sincey 1’5 determmes the
characteristic function of the sum of independent varxﬁhiea and indivectly
its function of distribution.

9. A few examples will filustrate the preceding remark.

&
Ezample 1. Consider » independent normally di%brihuted variables @1, g, . . . In
with means = 0 and standard deviations a1, r.rg, NY. #a  Their characteriatic fune-
tions are .
W, slkgraullbrary .org.in

@k(ﬁ)-‘eT ~“k—12 .
and the ch&ractensho funetion of thclr sum

3 »s\n k"SI o %
will be \
oty =¢ 2
where O
:\“ 0'2303—5—0'2 —]—cr”
Hencesiz a Wﬁﬂy distributed variable mth the mean 0 and the standard deviation

’n u‘—\/r.rl—b—o, R
N

S\E§f0und previously by a method involving a considerable amount of ealeulation.
gzample 2. Independent variables zy, %), . . . 2. have Cauchy's digtributicns
with parameters ar, s, . . . @, BSinec the characteristic funetion of x; Is

ekl ‘],
the chararteristic function of the sum

=z to:t - + &
will ba

olt) = el
where

g =ar ta - - 4 a

Hence, & again has C;mnh.y's distribution with the parameter g, + a; + - -+ + O
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Example 3._ ‘LeF E1y Ty - Dy be independent variables with uniform distribu-
tion of probability in the interval (0, I). The characteristie function of any one of

thern i3
i ,
1 . edt — 1
7 | ez = .
i J; it

Henece, the characteristic function of their sum s will be

e:'ﬂ — 1 =
pl(t) =( 7 ) - A

The distribution funection of & is given by Ko N

o R g _ 1\ — gmiw W/
F@) = C +—1un o (‘-’——1) L\

2w p=np « ily i 4

and, since the integral again is uniformly convergent, - Qg

1 ® feftn 1\ — ik )
Fo=¢ + 2 (6 iy ) T:i\\dv'

The evaluation of this mtegral presents certain d:{ﬁ?@ulttes To avoid them we
notice that the J_ntegrand cousidered as a function «o‘f .
complex variable # is holomorphic everywhere. Hernte, —--—-—/_‘\——_eﬂ"ﬁ.
we can substitute for the roelilingar padhtéuiibsm@ﬁm‘g in Fra. 20
the path T as shown in Fig, 20,

Now it is easy to show that mtegmtmg over the path T we have

. if g >0
ei £ s‘
@ —f dz/) _2“1““?% i g0

The Integral

3

:’3\ d et — 1 "iz
O N @ )

bemg a hnear\c%bmatmn of integrals of the type flg) with g 2 0 reduces to 0,
Similarly, a3

7= (—n""*f (1 :z:m) il "‘““E< Ly¥Crfe =)
T

o1, In explicit form,
t n
& S(—nw,ﬁ(— - ) .
n! i
¢
kéi
Referring ta the above expression of F{f), we find that

Fi =¢ +—E(~1)’°C’°(- - )

kSI
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The congtant € = & since F(t) and {he sum in the right member both vanish for
= 0. The final expression of F() is, {herefore!

1 - " nft Yonln — it Y
o= 3——[(;) —i(i‘l) +W('z" ) ]

The series in the rght member is continued ag long as argurenis remwaio positive,
Such is the probability that the sum

TR I P CHERCHE S 28

~
of n independent variables, uniformly distributed throughout the interval (0N} wiil
he lesy than . The above expression is due fo Laplace, who, however, ob(amed it in

quite a different manner. N\
Problems for Solution & «
1. Prove directly the inequality ' \\
2 < }
Fote = fatio i
2 O
for absolute momenta. AN
Hinr: The quadratic form in A, p .
3

(Mxl2 + g[xlgi’dqo(x)
W dbraull‘brary org.in

is definite or somidefinite. Show that ¢he equality sign cannot hold if ¢{(z) has at
least two points of increasc e, @ suehs 4Rt @ 8 is neither 0 nor +1.

2. Let @, 24, . . . % be o varigbles. Denoting the absolute moment of the order
afor x; by p&}, and by w5 the 'qk}otaent
\\ R A R
,,.‘ 1+
.‘.\’} ( fl} (2) + - .- +F‘§n)) 2
prove that o\
\v LS Y

N of € of

if § > 843 i

IIm( Use Liapounoff’s inequality.
7\ Wyariable is distributed over the interval {0, + =) with a decreasing density of
pr\babﬂlty Show that in this ease moments M. and M, satisfy the inequality
ME < iM, (Gauss)
and that in general

1 1
[{e + DMa* = [(» 4+ 1M
ity >p>0
Indication of the Proof. Show first that the existence of the integral

J; " wf(@)de

in case f{x) is a positive and decreasing function implies the existence of the limit

lim e (@) = 0; a— + o,
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Hence, deduce that
j; “rip@ =1, [ wde) = G+ DM, [ oot = &+ 0,

where p(z) = f(0) — f(z} and, finally, apply the inequality

[ [ “serdee) |5 [ [ ”xvﬂd;o(xJ]“-[ f "o |

4, Tsing the composition formula (1), page 269, prove Laplace’s formula on

re02m )l + AW g

page 278 by mathemautical induction. £\
E. Prove that the distribution funietion of probability for a variable whose charac
teristic function {1} is given can be determined by the formula O\’
NS ©
1{° #) 1 — i y W
Fw=¢ims | 22 d. N

TIwwt: In carrying out Liapounoff’s idea, take an suxiliary yaﬁalile with the dis-
tribution v/
1 Y |
Gl = — ¢ B
®) = 2kf_ o

dbgaylibiary org.i
14 %4:: ;. %/I .org in
) =l k%

dz. & :"\\"
\ Nt

Also make use of the integral

Many definite integrals can be evgluateﬂ using the relation between characteristic
and distribution functions, as the following example shows.

8. Let z be distributed overdsebe, + «) with the density Yse~i#. The character-
istic function being in this as

%

I
144

DT ew =

we find \’:\ "

o/ @ - t
) :% 1 1 —_ B—w! _ 1 gl
NRE =0 +2_«f_ Tt dz,

whetge, :\

\ \3 - —ief
lf € de = s—ltl,

T -—m]. +92

a0 integral due to Laplace. . .
7. A variagble s said io have Poisson’s distribution if it can have only integral

values 0§, 1,2, . . . and the probability of = k i8
ate™®

P

the quantity o is called “parameter’” of distribution. TIf n variables have Po%saon:a
distribution with parameters &, 63, . . - @ show that their sum has also Poisson’s
distribution, the parameter of which is &1 +a: + - -~ + @n.
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8. Prove the following result:

1 * {sin ¢\ sin f 1 1
2n ﬁ,,(‘;’) P TS Y S

[(t-l—n)" ~—T(£+n—2}"+

nin — 1) .
+ i3 Etn—4m ...

the series heing continucd ag long as arguments remain positive. .

Hint: Consider the sum of n uniformly distributed wariables in the interva]
{ =1, +1} and express its distribution function in two different waysa. ”

8. Establish the cxpression for the mathematical expectalion of the absolute
value of the sum of n uniformly distributed variables in the interval (\—*%, +14).
Ans. A\

. A
Bloi+aom+ -+ = 5 {n"ﬂ — 1;il'(?l s S

4-6 - -+ 2r +2)

' e ___}

0 — w1
+ IR =Y

the series being continued as long as the arguments .fé@zﬁn positive,
Huxr: Apply Laplace’s formula on page 278, co‘n?enient.ly modified, to express the
expeclation of @, + @e + - -+ -+ &, and that ¢INE + 2. + « « - + 2l

10. Bhow that under the same ¢onditiong as.in Prob. 9
www . dbraulibravy.org.in

"." o fn—1
N . B sin £ gin { — ¢ cozd
Elor 42 4+ - - - 4 2a) =y — — dat
N2 e\ £
HixT: Prove and use the folldwing formula
ne.
N w0z
.lim\ - — —dz = —xlwl.
Ae ST z?

11, Tet 2, and ;rz})e two identical and normally distributed variables with the
mean = 0 and !gbei\f»fandard deviation ¢.  Tf 7 is defined as the groster of the values
EXREEN tha-t\'%”\; ’

,’\\ z = max. {xf, |za)
find tl}c\m.é'an value of z as well ag that of 22, Ans,

m~\J

\ 2r 2
N\ E(w) =—=  E@) =14},
: Ve ( )
12, Let
T =min ([T, |zof, . . . |z
where &1, @, . . . 2, are identical normally distributed varables with the mcan =@ .

and the standard deviation ». Find the mean valuc of z.  Ans, Setting for brevity

el
o'\/‘l_r l]e ' du = (£,

E@) = j;ﬁ{l - B}t

we have



THE GENERAL CONCEPT OF DISTRIBUTION 281

In particular for n = 2

B(z) = \2—}(\/5 ~1),

/772
n+1

13. A varisble with the mean = 0 and the standard deviation = 1 is cailed a
freduced variable” By changing the origin and the unit of messureroent any
variable can be made reduced. For, if z has the mean a and the standard deviatiof's

the variable -

For large n asymptotically

E(z) ~

N
T—a 2 AN
7NN ¢
N

is reduced. The distribution function of the reduced variable u cggi'i’a,e called the

“reduced law of distribution,” AD
As we have seen, varinbles £, and z; with normal distribufi i have the same

reduced law of distribution, as does their sum, The question ey be raised: Is the
normal law of distribution s unique law possessing this pr@erty? {G. Polya.}

Solution. Let €1, %2 be two variables for which the getond moment of the distri-
bution exists, so that we ean speak of their means :ina\sf’audard deviations. Let x:
have itz mean g: and its standard deviation ¢1; ]jkr;wi.s:e,x let @2 and oy be the mean and
the standard deviation of z.. Three reduced yaridbles

2 — a1 ww%éd_brcyg.lﬁ‘brary.%mg — = a

U = 4 Uy = oy Wy = -
ot IS v o} + ol

~

have by hypothesis 1he same Jaw of didribution. Hence, they have the same charac-
teristic funetion o{f) whence W{r?&n draw the conclusion that the characteristic
functions of z,, £z, 21 + 22 arg{(mpect.ively,

ult) = cnp(ed); (D = el pall) = e p(V/ot + o).

Since .\ \

’\ walt) = e(Des{t),

2\
we must have ,Q(aﬁ arbitrary real ¢
R : eleblelot) = P(‘\/ﬂ"f + a3t),
or " ¢ .\: 3
W\ elet)olfl) = o)
where
&1 _ o . at+gi=1,

- Binee (1) holds for every real {, we shall have
olad) = pla®elapt); B} = wlapt) e(8%)
and
@ o(t) = plet)olabty’o(5%).

Applying (1) again to each of these factors in the right member of (2}, we find that

@) o) = olad)olaBi)e(as) (8%
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and proceeding in the same way, we arrive at the general formula
(4) 2 = plomDiPup(ar 187 - - - p(BH)Ps
where po, #1, . . - P» aTe coefficients in the expansion

I+ =potpz+ - +p™
The arguments
7 = a™, n =8, ... 0=

tend uniformly to O sinee @ < 1, 8 < 1. The guotient

] 1 0
."‘&ﬂ;—} - - f zzdF(t)J; (4 — Zeiiady O

is represented by a uniformly convergent integral; hence
ey -1 1f 1A\
= —: ) = — N
bm = 3 S H@ 2 AN
or '""\\.
o) =1+ [—% + )}p?

where )
o) =0  as v - {?\
At the same time \

log «(¥) = [~% + §{(v)[e? (pnrmal hraach of log}
WY - dbgaul]’fysary QrEig
Now, taking logarithms of both mem’f;ers of {4)
log «lt) = li"('Pnaﬂ“ {’Psfl’" WA e Lpag) A= 3+ 8

where again

where )
@ = t*ipusw\)}m + (a8 4 v pad (o),
Given e > 0, we can j;\&lgc 7 5o large that

\ ool <e; £=0,1,...mn
whenee \M

N/ 19] < gl
Thus ‘\

™
e

AN llog o(t) + 3% < &
az@\gin’ée ¢ can be taken arbitrarily small,
log ot} + §° = 0
or
olt) = 3,

which shows that 1he normal law is the only one with the required properties, among
all lawg with finite second noments.
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CHAPTER XIV
FUNDAMENTAL LIMIT THEOREMS

1, Bernoulli’s theorem, as we have seen in Chap. VII, follows fromea_
more general one known as Laplace’s limit theorem. In terms ah:ea,dy
familiar to us, this theorem can be stated as follows: Let an event £
oeour m times in a series of # independent trials with constant pfobability
p. As n becomes infinite, the distribution funetion of the guhtient

m — up ”"\'\
V'npg \¥
approaches Y,

1 ‘ — 3% 3efas o
vE)
as a limit; or, to state it in a less preeiSe form, the distribution of the
above quotient tends to nofigpdbrayhibrary org.in
Just as Bernoulli’s theorem ttselfis'a very particular case of the general
law of large numbers, so _Laglacé’s limit theorem is a special case of
another extremely general :th:e‘orcm, the diseovery of which by Laplace
may be considered as thg €rowning achievement of his persistent efforts,
extending over a period i} more than twenty years, to find the approxi-
mate distributionof? ijrobabﬂity for sums consisting of & great many
independent components with almost arbitrary distributions. The
result at whicknJaplace finally arrived is as astonishing as it is simple:
if @), s, . N (B(z) = 0,4 =1,2, ... n)are independent variables
{subject, ’t-d,some very mild limitations not stated, however, by Laplace)
and B{1s the dispersion of their sum, then for large n the distribution of
the‘qubtient
x1+$2"|‘ -+ za
VB,

is nearly normal, To put it more precisely, the distribution function
of this quotient tends to the limit

1]
__1_ e ¥idy
as 1 becomes infinite. N
Laplace’s attempt to prove this important proposition does nc?t stand
the test of modern rigor and, besides, cannot easily be made rigorous.
283
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The same is true of the attempts made by later investigators, notahly
Poisson, Cuuchy, and many others. Only after a lapse of many years
were truly rigorous proofs of Laplace’s thearem given. This important
achievement is the result of the work of three great Russian mathemati-
cians: Tshebysheff (1887), Markoff (1898), and Liapounoff {1900-1901).
An account of Tshebyshefi’s and Markoff’s ingenious investigations is -
given in Appendix II. Here we shall follow Liapounoff; for his method
of proof has the advantage of simplieity even compared with more recent
proofs, of which that given by J. W. Lindeberg deserves special mention.!

2. Before going into details of analysis, we shall state the hm{t theo-
rem in a very general form due to Lizpounoff.

Laplace-Liapounoff’s Theorem. Lef ®), 22, . . . Z» be mdependem
variables with their means = 0, possessing absolufe momerzié of the order
2 + & (where § is some nwmber > 0}: RS

[+
!-"-(2-136; P'ng-sr oo 1"‘2:*5'

w\/
If, dencting by B, the dispersion of the sur(:c\l + x4 -0 =, the
quotient NS,
_ e i S

@
b dbrauh%l q;:yﬁm gin

fends {0 0 as n — w, the pmbabﬂaty of the inequality

x;aﬁ\.@ + - oz
A\ \/B,:
tends unyformly o thelimit

MK

<t

1 &
N e~ hdy,
~0 V).

It is nﬁ'ﬁxfal that the complete proof of a theorem of such character
cannof B& too short, and to make the proof clearer it i advisable to
dlvlde it into logically separated parts.

. The Fundamental Lemma. Lt s, be a variable, depending on an

finteger n, with the mean = 0 gnd the standard deviation = 1. If s
characteristic funciion

¢a2) = E(eier)
tends to

e 2

t Lindeberg's proof, as well as later proofs by P, Levy and others, make use of an
ingenious artifice due to Linpounoff. Lindeberg axplicitly acknowledges his indebted-
ness fo Lispounoff, while Levy and other French writers fail to give due eredit to the
great Russisn mathematician.
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uniformly in any given finite interval (—1, 1}, then the distribution funciion
Fu{t) of sn tends uniformly (in the domain of all veal values of £) o the lmdt

e iy,

1
~ 27
Proof. a. Together with the variable s,, whose distribution funetion
is F.(), Liapounoff considers another variable

Tp = 85 + Y I\
where y is & normally distributed variable with the distribution :E};\I}Qtion
1 v o o.at O
Gy) = PRV I oy, X (s

Denoting the distribution funetion of =, by Ha(f), we have (Chap X1,

Bee. T)
N

(1) H.(t) = dF () \e'“’du
‘\/_ — @ ’_‘ o
On « t of th lit "
T account of the 1neq\:’1\a~1{\; gbraulffn Ay .Org.in

1 J‘ \
—= | ey *g B_T’ T=z240
vVl b
we have: {,‘{\ _
1 _X\Q.' _(Ej)!
Fort —z < 0: — |() e—“'du— K7 08 sl
TI' 1—°°
» . f-—x

x:i; R 1 J‘” o' _(!_x)
Fort — x =2 0fy=— ey =1 ——# evidu =1— ¢ A7
ANAVZN SR Vidizz 2
) 0<¢" <1
e QO . .
HeRQe\,, fatroducing these expressions into (1),

H,(t) = f: dF () + f -(59, AF (@) — = (—z)dfe )

where again 0 < g <1; 0 <8 <1 This leads to the following
inequality:

L) — PO <4 f :g-(%”) ),

f e_iifﬁctx_ﬂdv
PRVZ S B

But

)
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and consequently

w AWl
[H (8 — Faif)] < %J‘ e e, (n)dy

ar

E?—-—m

@) 1H0 ~ Pl < \/’{f T ) — 6 T +

.'h LI =
-+ f K3 28"‘»}3151!}

Here we sphit the first infegral into three Ji, Js, J3, ‘raken Kespectlvely
between limits ~ o, ~—I; —I, I; [, + o and denote thg 3 (‘Dnd integral

ot

by Ju Since [pa(t) — ¢ 2| < 2, we shall have '\\
B C o
h b 2e ¢
3 T d < a6 Q
() 4%I 1 3[ f \ 7r l
because
i ;é:f‘ -éigf“‘
| wwwﬁ :@“{1‘?& 4 o
for positive z. Also ~
o= T h
(4) ¢ 2dy = —
4«52\ FRVES Ve

To estimate J5 Wo s’hall denote by e,(I) the maximum of |ga(v) — ¢ Z|in
the mterval £\<__ v = 1. Then

W\ h he (D) (" -2
5 J
(5) A 4\/4 o < e

~\. iz ) fdv = 1‘“(1)'

Findlly, taking into account (2), (3), (4), and (5), we find

(ﬁi)’
\/8 HEv= \f R

b. Expression (1} of H.(}) ean be transformed in a manner similar
. to that employed in Chap. XIII, Sec. 7, if we first write

(© [HW () ~ Fut)] < en(l) + —

i {~m

i A 1 h
— ey = T —uidar
v tp), e

fo Tl
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Thus we geb
1 1 o Iﬁnzl _ e"'“‘" (
Ho®) =7+ o Tl el
©=3+=]| -
or
L"»’ "’Siﬂ t ————itﬂ 51
H.{) = 3 + f Z—dv + f e R X0

Now O\

1 —Zsinty 1 2 Zsin iy
= R " PR R L )
T Jo v T Ja ¥

] . _kw? 2 ,’.'
0<1—o¢ 4<i11 o)

and consequently PN
€ o
1 1{* —Zsintp BaND o) — ¢ 3
=1 2 5 AW plgnlt) — € 7
H.(t) “L‘ € > dy| < I ;i-”;zwj‘_ K N dv.

To find an upper bound “of iﬁi}%ﬂﬂ)’mlﬂlé’nght member, we split
it into five integrals Iy, fo, 15, T 4(.*2';, taken respectively between limits
—w, —; =, =} =X, A; ?.\’" i, +=. To estimate J;, we notice

that w\
'{n} o - 1)2
ea(w) S < & f 2dF,(a) = &

pe = 2 ha\
_— Y it
< ‘h-j; ve dv _.\411-

since 'g

(7)

% ot

A\ PROEEEIFYZ

N\
(8) N —[I i = f#dv 3;

To estimate I, + I,, we use the mequahty len(t) — & 2| £ ea(l) and we
get

en(l) en(l)
Finally, dealing with I, and I, we use the obvious mequality

lon(e) — ¢ 2| =2
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and we obtain
_he

v ’*“*”dv 4e 1
(10) 111+Ia|§. J; e < = (M}Q.

Taking into account (7), (8), (8), and (10), the following inequality
results:

(R
11", ~gsin e) | de I
_—— = — < __. .
lH““) R ot e T 1%
In it, since X is still at our disposal, we can take ¢ \
) = e, (DML N
The inequality thus obtained when combined withﬁbf}gg’;ives (e = Ri)
1 —sm tv 4e \, 3 e 4
av |ro-1-1" P gt
a
+ 2 (5 i ?)(la’_) e + 3ea(l).

WW W dbrauhhl ary org.in
Here o and ! are arbitrary positive 'numbers. We dispose of them in

the following manner: Given an Satbitrary positive number ¢, we take ¢
80 large as to have

~ ’\ '
\)}6 T 2e¢ 2 1
+ '\/— o < gE
and sfter that \Q select [ large encugh to make
0" at 1
s\ vt e <E

Fmallyg smee for a fixed l, €.(l) by hyoothesis, tends to 0 when n — @,
' thqe‘ ¢xists a number nq auch that

—~1%2 ':EE 15
(__2_“.__ + :/;)(Ia ) én(z)g-\,‘" ] n(l) < 3

for all # > me. The inequality (11) then shows that
- 1 °°~';—’sintf)
F.(1) 3 WJ; e —-‘y—-dv‘
for n > ng and this moeans that

R t 1,

H—s o

< €
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uniformwly in ¢ beeause the number sy, as clearly follows from the pre-
ceding analysis, depends upon ¢ only and not upoen &.

Remark 1. Without changing anything in the proef, we can state
the fundamental lemma in a slightly generalized form as follows: If £,
tends o the limdt §, the probability of the tnequality

sa < I,

lends lo

(]
_1__._. g i 9du’

Vor)_. O

Remark 2. The fundamental lemma, although nof, exphmtiy stated
by Liapounoff, is implicitly contained in his proof. . More general
propositions of the same nature have been published by{Pélya and Lévy.
The very elegant result due to the latter can besstated as follows: Jf
the characteristic function of the variable s, tends to't\@’charactem'st{c SJunction

o) = [ ° edR @)
of o fized distribution um'for\{r’zéywi glﬁmte interval, then

rary.org.in
lim F (i} = F(8)

at any point of econtinutly of FE)
The above proof, correspohchng to the particular case

\\
O = — f eiv'du,
C\ :

ean be used, alméét WIthout any changes, in proving the general proposi-

tion of Le\ry
3 Proof \f Llapounoﬁ’s Theorem. . If Liapounoff’s condition

I\ {n) :
M.\ .utgh)- F uf (2) s+ +P~s’-'+.5__)0

O o
is satisfied for a certain 8 > 0, it will be satisfied for all smaller &

Let fi(t) be the distribution funetion of e = 1, 2, , n). The
sum

O =L@+ O+ 0

being a nondecreasing function of #, the following inequality holds

(Chap. XTII, Sec. 5):

(f = o) = (f " arw)™ - (f " rar)"™
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provided ¢ > b > ¢ > 0, We take here
a=2+44 b=2+4%, - e=2
supposing ¢ < & < 5 Then

f_:|t|bdf(£) = Zugfgg; f_:lé!“df(t) = Dufs; f_: ldedf (&) = B,

and A
n § n ¥
(zﬁﬁa’) = Bnﬂ_a’(zﬂgﬁa) ) ::\t\'
i 1 NS ©
But this inequality is equivalent to \,n’f"
P D ’
" n _5' " M\ »
Sty [ D
1 1 AN,
=\ D
B, 2 B, A
and it shows that OV

N/

n o\
www,dgmmry.org.in
1o\
A
S
If :\Mx\
{ \/
\\ n
\ ()
O 2#24-5
X/ 1
g 3

Q> B,'?

L

— 0,

A&
provided 0 %\’6‘ < 8. Hence, in the proof we can assume that the jfunda-
mental Qccil'ﬁlition ig satisfied for some positive § < 1.

b, :@h‘pounoff’s inequality (Chap. XIII, Sce. 5) with ¢ = 0, b = 2,
e5 2+ when applied to a; gives

U S G2)Y b= B,

Hence,
Y ,

. ] —

(12) b o (ML L
Bn i +E b
B, 2
and, since if is assumed that w, — 0, all the quotients
bs b;

E=bl+bg+'--+b“ =12 ...n

will converge to O uniformly as # — .
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¢. The following formula ean easily be obtained by means of integra-
tien by parts:

22 1
efr =1+ dxr — 7~ ng (et= — 1}(1 — t)dt.
1]

If x is real and in absolute value >2, we have

2 ](\ixt_l 1.—5635“: . o (7]
o 0 e )¢ M| = 2t < - I\
since p ,\’:\:
gist — 1] € 2, N
% N/
If |x]| £ 2, we can use the inequality N
3 (O
et — 1] = 25t < 2%;5 NO)
and find \\,
s b2
f (e — 1)(1 — t)d!,‘ _‘?{&gs <
Thus, for every real z W, dbx;a\lh«bl ary.org.in
N +3
¢ = 1 + iz — %’+ e]ﬂza ;=1
L
Substituting here \\\ )
Zt
." = t—-—- = t
S~ FT B, b
N
and taking the; niaﬁhematical expectation of both members, we have
\
(13) @k(Q\w Blews) = 1 — Dk 4 g s e S 1
» 2 U

Fl}%ﬁermore, since

1_93:6_:_;3;2; r>0; 0<8<1,
Wwe cah write

by _ -—ﬁii _ 8 tgbk)
(14) R (23

If w,|f**3 < 1, we shall have, by virtue of (12),

bkz
Bﬂ <1
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and consequently

3

2 _'E 4 1+§ h
by _ b_“’ii (b"ﬁ) < 1 b"t‘) < u“‘_ﬁié_.mwa
2B,] ~ \2B. 2B 21_% 2B, 1487

4B,

Thig inequality, together with (13) and (14), leads to the following
expression of ox(t):
bx

N
(15) oult) = ¢ B (1 4 ox)
where ‘ &)
9 3 B 0es B ats ) O
(16} [oe] < g4 ~EEB[f|as < IS
Bt B.fr 8
d. The characteristic function of the variable "‘\\
' T k2 R~
\/‘ \2
is
e(l) = wl(t)sog(t) © enlt)
b
because 1, T3, . . . Tu are m%le]}”)ael»ll}:;it:lr?g%g}lga%jleb Henee, by (15)
() = e—i‘g(lfi- 0'1)(1 2 IR ¢ 0 o
o) =4 < (L)L) - - (L) —1 <o -t =3
and \\
(17) Jolt) ~ o=t < giold? _
taking into awqunt mequahtles (16). Inequality {(i7} holds if
A&
O anft] < 1.
Suppose now, that ¢ is confined to an arbitrary finite interval
m\\: 7 —Z < <

© =t

Because w,, by hypothesis, tends to 0, the difference
AL |

will tend to 0 as n — «. In connection with (17) this shows that
o(f) e

uniformly in any finite interval. It suffices now to invoke the funda-
mental lemma to complete the proof of L1ap0unoff’s theorem.

b. Particular Cases. This theorem is extremely general and it 15
bardly possible to find cases of any practical importance to which it
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could not be applied. Two particularly significant cases deserve special
mentlon.

First Case. Let us suppose that variables x1, 25, . . . Z.are bounded,
go that any possible value of any one of them is absolutely less than a
constant, €. Evidently

uils = C°E(l) = O%;
and hence

£
k]
A
o) [ o
3»:-.ual o
/

It suffices to assume that N\
B,=bi+b+ - +b

tends to infinity to be sure that w, — 0. Hence, dealj,@g"ﬁvith bounded
independent variables, the condition for the validityof\the limit theorem
18 £ NY
B, — = as # 2oV
which is equivalent to the statement that ﬁlig Series
E\)a.;wh{\_v_glzbt?%;‘[’sﬁ'_{iry.pl:g.in
it divergent. N .

Puisson’s serics of trials affords’a good illustration of this case. In
the ususl way, we attach to.dach of the trials a variable which assumes
two values, 1 and 0, acco dﬁzg’ as an event E occurs or fails in that trial.
Let p; and ¢; = 1 — ppbe'the respective probabilities of the oecurrence
and failure of E in t]\ﬂe ih trial. The variable z; attached to this trial

N

is defined by ,\“
& 2; = 1 1i E oceurs,
AN\ 2 = 0if E fails.
Noticing that
w\f ® E(2) = vy,
we int-r:’)duc(a new variables
2= 2 — Pi =12 ...n)

with the mean 0, whose sum is given by
m — np
where m is the number of occurrences of E in # trials and p the mean

probability
p= prEpet - D

e
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In our case

E@xY) = pigs

n
= 210.79:‘-
1

Hence, we can formulate the following theorem:
Theorem. The probability of the inequality

and

. A
m — np < {v/B,
tends uniformly to the limat \\‘“\
1 ¢ u!d N "'
— e 2du ™
] K%J‘_ N ) :\
P\ N
as n—> oo, provided the series A
w ':1\\)
zp,q.- A
s divergent. At the sam%tzmedm%ﬂmmy%qﬁ the tnequalities
t\f <m"‘np<t2v.8n
tends uniformly (in ty, {2) t.o U@ hm’at
\\ '—-—f e 2du
Second Case:.~:}123t 21, 23, . . . 2. be identical variables with the
common mean/and dispersion b.  Supposing that for some positive §
~
\”' Elz; — a]™® = ¢
\
emsts, Wevhave
o \ “/ 5
\ wﬂ:—nfl_._..a—_h...i_a.n—‘é’
(ﬂb) = bl +§

and hence w, — 0 as n — . The limit theorem applied to this case
can he stated as follows:

The probability of the inequality
PR - PR +zﬂ-na<t\/’;b

tends uniformly o
2 du,
&l
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provided
Elz,- — a!%‘s

exists for some positive 8. As a corollary we have: The probability of the

inegqualities
B -
SN IPLERE SHEE TR
7 n n

2 2 :
e Zdu. \
‘\/g'ﬂ.j 0 N\
2\

This propesition is regarded as justification of the ordinary ptpeedure
of taking a mean of several observed measurcments of the sanie quantity,
made under the same eonditions, to approximate its Mrie value.”
Barring systematical errors which should be eliminated by a careful
study of the tools used for measurements, the true ¥alie of the unknown
quantity is regarded as coineiding with the expepfation of a set of poten-
tially possible values cach having a certain probability of materializing
in actual measurement. Sinee for compai:aﬁively small ¢ the above

integral comes very near to 1 and A S
www.dbraulibrry .org.in

w7

for large n beecomes as small ag we please, the probability of the mean of a
very large number of obsetvaiions deviafing very little from the true
value of the quantity o be measured, will be close to 1 and herein lies
the justification of the'wiile of mean mentioned above.

AS

tends to

/EsTivaTion oF TiE ERROR TERM
6. The limit theorem is a proposition of an essentially asymptotic
character, <Ib states merely that the distribution function F,(#) of the
vuf:a,riablga\'j »
) I T . .
i B,

1t -2 P
e 2y
vz ).
a8 7 becomes infinite when a certain condition is fulfilled. TFor practical
purposes it is very important to estimate the error committed by replar?-
ing F,(t) by its limit when = is a finite but very large num.ber.. In his
original paper Liapounoff had this important problem in his 'mmd and
for that reason entered into more detailed elaboration of various parts

appreaches the lmit
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of his proof than was strictly necessary fo establish an asymptotic
theorem.

We do not intend to reproduce here this part of Liapounoff’s investiga.
tion; it suffices to indicate the final result. Assuming lhe existence of
absolute moments of the third order Blzi®; ¢ =1, 2, . . . n, we shall
guppose n so large that

O il ol i el - <1
@n = B;,% ' 20 N\
Then, setting A
Ful) = —— [ evdu + B L2
» _ e we 2L /
‘\/_% - ’ N :

we shall have N\

1 A\
IR < %wn[(log 3%)% L 1,1] 1+ o log -1‘{— fZuteton

Although this Jimit for the crror term is Ié\ib\bably too high, it secms
to be the best available. However, it is gr:ca,ﬁly desirable to have a more
genuine estimation of &,

7. Hypothesis of Element Errdrs It is considered as an experi-
mental fact that acmdeﬂt\t‘sﬂ“’arg&?-ﬁ'lﬁ? BH§ations (or measurements)
follow closely the law of normpal distribution. In the sphere of biology,
gimilar phenomena have be&Q observed as to the size of the bodies and
various organs of livi &Qfgamqms What can be suggested as an
explanation of these ob, Iiwed facts? In regard to errors of observations,
Laplace proposed a h}*pothesm which may sound plausible. He considers
the total error ag’a‘sum of numerous very small elementary crrovs due
to independent Gaiizes.

It can h‘s{'d\iy be doubted that various independent or nearly inde-
pendent ’czjtlﬁps contribute to the total error. In astronomical observa-
tions, fgrinstance, slight changes in the temperature, irregular currents

.{ ity vibrations of buildings, and cven the state of the organs of percep-
tion'¢f an observer may be considered as but a small part of such causes.
One can easily understand that the growth of the organs of living organ-
isms is also dependent on many factors of accidental character which
independently tend to inerease or decrease the size of the organs. If,
on the ground of such evidence, we aceopt Laplace’s hypothesis, we can
try the cxplanation of the normal law of distribution on the basis of the
general theorems established abovae,

Suppose that elemeniary errors do not execed in absolute value a
certain number [, very small compared with the standard deviation ¢
of their sum. The quantity denoted by w, in the preceding section will
be less than the ratio /¢ and hence will be a small number; and the same
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will be true of the error term B, Hence, the distribution of the total
arror will be nearly normal.

Laplace’s explanation of the observed prevalence of normal distribu-
tions may be accepted as plausible, at least. But the question may be
raised whether clementary errors are small enongh and numerous encugh
to make the difference between the true distribution funection of the total
error and that of a normal distribution small. Besides, Laplace’s
hypothesis is based on the principle of superposition of small effcets And
thus introduccs another assumption of an arbitrary character. A

Finally, the experimental data quoted in support of the Igo(rﬁﬁ,l\ dis-
tribution of crrors of observations and biological measurements are not
numerous enough for one to place full confidence in them, “FHence, the
widely accepted statistical theories based on the normaldaw of distribu-
tion cannot be fully relicd on and may be considered-iercly as substitutes
for more accurate knowledge which we do not yct\possess in dealing with
problems of vital importance in the sphere of {@én activities.

Limir THEOREMS FOR DEPENDENT VARIABLES

8. The fundamental limit theorem editbe extended to sums of depend-
ent variables as, under sﬁéﬁiﬁi—%ﬁﬁﬁ'ﬁﬁ%i@fﬁéﬂi&:&%hown first by Markoff
and later by 8. Bernstein, whosework may be considered an outstanding
recent contribution to the théory of probability. However, the condi-
tions for the validity of the(théorems established by Bernstein are rather
complicated, and the whele subject seems to lack ultimate simplicity.
For that reason we cofifinc ourselves here to a few special eases.

Exzample 1. Le ﬁé %onsider a simple ¢hain in which probabilities for an exlfent E
to oceur in any tsialfire p* and p”, respectively, according as E oceurred or failed in
the preceding ﬁ‘i@‘ ’ The probability for & to oeeur at the nth trial when the results of
. other tria,ls’ a,re\mknown id

Ny pn=p + (pr — pyin?

S
Whe%\jui is the initial probability, § = p* — p" and

‘The mean probability for n trials is given by

pr—pl— &
pn=p+ n 11—

50 that p may be considered as the mesn probability in infinitely many trials.
In the usyal way, to {rials 1, 2, 3, . . . we attach variables &1, %z, %3, . . . 50 that

in general

e =1 —p or - & = —pi
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according as E occurs or fails in the dth trial. If m is the number of occurrences of
E in n trials, the sum

ottt 2

of dependent variablcs Tepresents

m — AP
Evidently
Elm — npa) =0
and, a2 we have seen in Chap. XI, Sec. 7, O\
3 L\
B, = B(m — nfin}* ~ n‘pql—-{_—-a, R\

that is, the rafio of Ba.: npqlT—__—i_;: tends to 1 as n becomes infinitel \
AN o
In order $o find an appropriate expression of the charhoteristie function of the
quotient S\
7 — nfn \‘ 4
NS

we shall endeavor first to find the gencratmg»functmn wm(£) for probabilities

Frenlrd braﬂlli}i’?qr—y orghn

to have exactly m ocourrences of E v . trials. Let A be the probability of m
occurrences when the whole sericg‘ends with E and sinilarly Bum,, the probability of
m pecurrences when this serieg@nds with F, the event opposite to E. The following
relations follow 1mmedlate1}\hom the dcﬁmtmn of o chain

(18) . ,,Am,n+l = Am—l‘np -+ Bm—l‘np
¢ "¢/ Bm,n-H. = Am.m‘f + Bmmq”-
Let :'\’w’

\ 8.() = zam ™, Palt) = ﬁ)B,,.,m

N,
S

be tbq\é?}aémﬁng function of Am.and B,.. From relations (18) it follows that
3

fnall) = PFMM(Q + p"tgn(t)
ik
as) Ynillt) = g'6a(t) + ¢ "¥ult).

These relations established for # = 1 will hold even for n = 0 i we define #,(t) and
Yoll) by

P+ P =
o ¢ =1 —m
whenee
fo + o= 1.

From (19) one can easily conclude that both 6,(f) and ¢.({) satisfy the same equa-
tion in finite differences of the second order

Buie ~ (Pt 4 g8y + 818, = 0
Pare — 0+ ¢ W + S = 0.
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Evidently

Pm-ﬂ = Am.n + Bmlu;
henee

@all) = 0.8} + ¢uff)
satisfies the equation
(20} @nsz = (Pt + ¢ Nonyr + dlwn = 0
and i completely determined by it and the initisl conditions

wy = 1, wi = g + pid.

Since i . ,
pP=p+e,, ¢ =g+ ps N

the eharacteristic equation corresponding to (20) can be written £

€ =1 =9 = 6= Dl + 995 - 4 '\Z’"

and for small £ — 1 its roots ean be expanded into power sefics,)

f1= 1ol - 1)+ el — 12 b
Tp= 8+ it — 1) L dolt — 1}2'\—{—\

The general expression of wa(f) will be e ) %
wa(f) = AT - Big = A;"* —£ Bﬁ“;ﬂg‘-"
where to satisfy the initial conﬁiﬁibhdhﬁ@ﬁ;&bl EAheorg.-in
=§z"91" ’:’B=—§'1+§1+P15.
»i"f\ fa— 5
Having found w.(2), the chara{berlstm funetion of

\ » m — A

’.\' - ’\/Ee

will be given by ‘\ ’

\v' —ni’rnu—i_. —
‘/B“wn eV ],

walt) = @

299

To Study% the asymptotic behavior of ga(#) when ¢ is confined to a finite fixed

intenf:;ﬁ;t\:*i = v = I, we notice that then

u=\/E.

will be well within the convergence region of the series we are going to _consider now.
By means of Lagrange’s serics or otherwise, we find the following expansion of log {1in

power serics of £ — 1
g8
log &1 = p(t — 1) — f’—»— R

convergent for suficiently small valuesof { — 1.
Dower series in u
pgl + 4
= Hu — — %2 ot
log f1 = piu =5 3% F

By setting t = e™ we obtain another
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convergent for sufficiently small u. Henrce

npi— ﬂpq—}-j_-f u +nutglu)

144
- npm-l—ﬂpqia % — nulglu)

where g(u} iz a bounded function of w, « being contained in a certain interval (—y, 7).
By substituting

= — N
V/B. A
here, we eagily conclude that \' Nt
“'ﬂﬁ il ‘\,,;
e VBagn P ¥
tends uniformly to the limit :\"\ >
22 » Q}
¢ ? \
in the interval —I & » £ ¢ while ¢*
— NP W
e \/3“;—" »,

remains there uniformly bounded d%m(e ES ‘ean e,a.sﬂl)lr be seen, 4 and B can be
raulr rayy.of
represented by power series

A 1+a1u+am”+
B = Lol — gt — - -

A tends uniformly fo 1 and %ﬁd's unifoermly to 0. Hence, finally, ¢, i) in any fixed

2

2

interval —[ £ ¢ =1 tends waniformly to e It suffices to apply the fundamental
lemmas to conclude th&‘t\the probability of the inequality

\“' —
¢ \~ M — 1P < tnv/ Bn
tends mﬁarm@\to the limit
/" ’"\ ' ’
\\ e/ _\/EJ‘ 2 du \

if £, tonds to &

5 .
p and J, differs from » by a quantity of the order

l+a
m—np <t l—lnpq

M — Afn < tay/Ba

with 1, tending to ¢, whence, using the above established result, the following theorem
due to Markoff can be derived:

Binee B, iz asymptotic to npqi +

1/n, the inequality

¢an be written in the form



Szc. 8] FUNDAMENTAL LIMIT THEOREMS 301

Theorem. For a simple chain the probability of the inequalities

f1+35 f
L) 'i--_i_-—aﬂpq <m—np < ig\/i—i_——grnpg

tends fo the limit
1y u?
L e Zdy
'\/ﬂ 31
a8 fo— oo O
Example 2. Considering an indefinite series of Bernoullian trials with the prob-
ahility p for an event 4 to accur, we ean regard pairs of consecutive tr@a’lé"l, and 2,
2 and 3, 3 and 4, and so on, as forming & new scrics of trials which ma’y}pmd_uce an
event & consisting of two successive ovcurrences of A(E = 4.4) or a.p‘é)"ent F opposite
lo E{F = AB, BA, BB). With respcet to B the trials of the newsgeries are no longer
mdependent. Let m be the number of occurrences of B in n "tilﬁ\ais: Then

Elm —ap?) =0
and ‘.\\.:
Ba = E{m ~ np?)® = np’y(1 +8p) — 2py
as was shown in Chap. X1, Sec. 6. ¢ ‘ ' '
Let P.. . be the probability of cxactly m _occlitrences of E in a series of n trials.
Evidently www.dbrau ﬁ br?cn'y.org. in
Pm,u = ’;A‘;».; + Bm,n

where 4,,,, and B,, , are the pmhabi]ii-iés of m oceurrences of X when the Bernoullian
series of » - 1 trials ends with A(6r B, respectively. By an easy application of the
theorems of total and compourd probabilitics we get

N\
\ \im,ﬂ-}—l = Am—l.ﬂp + Bm.ﬂp
...: 7 Bm,ﬂ_‘.]'_ = Am,nq + Bm,ng-

S\

A</, . . :
Corresponding 1o t,h\égg» relations the generating functions
\ # - -
§ Oalt) = D Amat™  ¥ul) = 2 B, ot
m=0 m=0

R

N,
NS
e

£\ _
satisfinthe following equations in finite differences:

Boi1 = Pibn 1+ Pfn
Yap1 = §fin + @

holding even for n = 0 if we set 60 =, ¥0 = ¢ Hf:nce, it follows that é.(f) and
¥n(8) satisfy the same equations of the second order

frpz — (Iﬂf + Q‘)&:H-J + }Jq(i - 1)811 =10
Pryr — (Pf -+ q)\bn+l + ?9(3 - 1)\!’1'& =0

and so does their sum

wnlt) = 0u(8) + ¥all) = D Preal™

m=0
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"Thug, to determine w,{t) we have the equation
watz — (@F + Qunpr + 0l — Dese =0
and the initial conditions
oy = 1, w =1 — p? 4 pi.
The general expression of w,(t) is

wnlt) = A8t + By = AL} + Bprgr{ — 1)77"

where £y and {3 are reots of the equation O\
Bt =pl - DG — 9 O\
and o\
A=—§'2+1+P$(i“1); B = fi—1 =%t —‘1}7
1 — s £1— £
W

. o\
If ¢ is the root which for £ = 1 reduces to 1, we easily findl the following series

p(—p* + 2p9)
S (£ 1}2

W

log oy = p2(t — 1) +

‘“/

or, setting ¢ = ¢* and supposing u mfficiently_ smaﬂ
WWW dbl}ﬁdl{h%@%}ﬁfl g in

log {1 = ip%u

As to A and B, they can be dcvcleQed mto series of the form

~\
4 '{«.‘1’=1+Gu”+"'
\B=—cu2+

N\

Hengce, reagoning in thro mmc manner as in Example 1, we ean conclude that the
characteristic functmn\ /

’:\ - np’v
A\O” oult) = ¢ VEwn (V)
of the varia]s.@k
:..\“:'; : 7 — np?
Q¥ VB
. o2

tends to the limit ¢ Zuniformly in any finite and fixed interval —1 < v < 1. Refer-
ring, finaily, t¢ the fundamental lemma, we reach the following conclision: The
probability of the inequalities

v/ npe(l +3p) <m — np? < t:\/np%( + 8p)
tends uniformly (with respect to & and £;) to the limit

N
——j e Zdu
VorJu

asg n — o,
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Problems for Sofution

1. Consider a serics of independent varishles &1, T, ¥s, . . . Where in general
o {k =1, 2,3, . ) can have only two values 5% and —k= each with the probability
1s. Show that rhe limit theorem holds for the variables thus defined fax —1g,
but the law of large numbers holds only if & < 4.

Solufion. Evidently

El@) =0, E@) =k, Bl = =

Trom Euler’s formula (Appendix I} we derive two asymptotic expressions O
nletl L\
Bn=13¢+23“+---+nhm2a+1 \\, wé
_ plectl N\ "
1 L 9% 4 .., +n&z~3a+1. “\z N
Henee m:\g’
2+ 2 _ v

“n 3a+1 , Wﬂ_’{"

50 that the limif theorem holds, For @ = 14 the probabillty of the inequalities

“'

2+ Xy - ’+ Tn
€ S dbrauﬁhary org. in

tends to the limit LN

‘v

a2 )
21 EsTau = J' e~ ¥du
and the law of large ]111mhers\dcnes not hold.
2. Lot my be the nu:mber'of successes in ¢ Bernoullian trials with the probability .

Show that the limit t.hcbmm holds for variables
.\ 7
\”, si=m"3”; i=1,2...n

but the lrtw of large numbers does not hoid (Bernstein).
Hl\rr\ W
i : +=~1—- 71 +
St et g = () [(1+%+ \/; 1
1 1 1
— ...+-——m+--‘+"——-3n:|
+(\/2+ '\/;z) . V'

where »), &, . . . a, are independent. variables with two values g and —p associated

I the customary way with trials 1, 2, . . . #. ) h
3. Consider an infinite sequence of independent variables #:, %2, 23 . . . Where

%5 can have three values

0, (og E)#, —(log Kk}
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with the corresponding probabilitics

2 1 1

LGt floz k+ 1P & +a llog k+a)l” &+ o) flog (k +a)}?

a heing a sufficiently large constant. Moreover, p and p satisfy the inequality
% — p -1 >0

Show (e} that Liapounoff’s condition is satisfied when » < 1 and hence the Timit
theorem holds; (#) that this condition is not satisfled if p = 1 and at the sume tifie the
limit theorem fails at Jeast for g > L

Solution. &. By using Tuler’s formula we find f’\t\'
P\
Gu+1— )t LI
o p—1} N
— i flog (n + 72N ¢
v gt 1 R4
Hence Lhe first part is answered. 4
b. The probability of the inequality \;
E R T xn\% b
iz less than { ‘: v
dbrauhbrafy org.in
22
(k —L—d)*{]og (k + a)le

and this, in case p > 1, is leas Eh@i
\\‘,l

3

p — l(log ay e,
Hence, the probabilit:} ;ff the equality
"\‘\“ Titzt - +2=0

\.,

2
remiaing &h}'&ys >l — —— (log )™ and the hmlt theorem ecannot hold. Note
p =

thmb\B,,z-—, @ becanse 2y —p +1 >0,
/ Prove the asymptotic formula

ne 1

BT Tt L

% being a large integer.

Hixt: Apply Liapounoffs theorem to n vatiables distributed aceording to Poisson s
law with parameter 1.

5. By resosting to the fundamental lemma, prove the following theorem due 10
Markeff: T[ for a variable s, with the mean = 0 and the standard deviation = 1

lim st e — g
o o) = \/ f ¢
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for any given £ =3, 4, 5, . . ., then the probability of the inequality s, < ¢ tends

to the limit
1 ¢ 3
3 eIy,
\/E;f -

6. In many special cases the limit of the error term can be considerably lower than

that give.;g m See, 6. Fur_ instanee, if variables @, 23, . . . z. are identical and uni-
formly distributed in the inferval —14, 1g the probability F.{) of the inequality
" N
TLA et o b <y
12 £ "\ v
differs from ( -~

by less (in absolute value) than N\ v
n ¥
1 1/2 12 -5 >
RITE TS N
hn  rm\x *in AV

the last two terms being completely negligible for‘s})n{ewhat large x.
Indication of the Proof. First establish theinéqualities
dn o " adbraglibiary.ong in,
—E e 8 T8 18
v

\
s Y
S

for0 = o < 7/2, Further, Iepreé\é‘nt F.(t) by the integral
s J
.\\5,/ . . § &
1f of SEAL Y ain ol
— dv

A 1
Fotd =3+~
\t’ 2 «Jo v\/é_ v
7. n

’ poy &/
and split it int&wﬁ integrals taken between 0 and wﬁ/ \/1_2 and rﬁf ‘\/E and

+ =. N
7. Bupposing again that zi, &5 . . . #» are identical and uniformly distributed in

the ill’({?%},ﬂ‘ -1, 14, prove that forn = 2

) 3

n 8
E|$‘+“’”+"'+x"[=\/e%+ﬁo = 0<o<l

8. Let s. be a variable with the mean = 0 and standard deviation =1. If its
charagteristic function ws () tends to ¢ % a5 » — » uniformly in any finite intervul
=l £t 5 I, show that

. 2
s} — \/;
2B — gt
Elss] — \E - ng —
T Jo

Hixr;
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9, If independent variables i, @a, . . . %, With mcans =0 satisfy Liapounoff’s
condition, prove that

2
Elxy a2+ - - + @l N\};Bn'
10. Show that for a simple chain of trials

2npgl —1— )

Elm — np| ~ T 1_¢

Q"
7 heing the mean probebility in infinile series of trials and & = p’ - o A\

11. A serics of dependent trials van be illustrated by the follomn;,\u?n gcheme:
Two urns, 1 and 2, contain white and black balls in such proportions thil the prob-
ability of drawing a white ball from 1 is p, whereas the probability’ of drawing a
white ball from 2is ¢ = 1 — p. Whenever a ball taken from ﬁn urn is white, the
aext ball is taken from the same urn, but if it is black, the nex,t\bhll is drawn from the
other urn. ‘The urn at the first drawing is sclected by lot,€he probabilitics of seleut-
ing the first or the second urn being given. Evidently the course of trials is defter-

mined by these rules without any ambiguity, Letm de,ho{o the number of white balls
obtained in n drawings and let A\ N

o = p? + g
Bhow that the probability of\'\‘.ﬁé\'\idyé}ﬁ%%far y.org.in

—a R 21 —
m — woe < t\/L;z(l — aln; L = (1‘)3—;0?)
= 2pq

approsches the limit <
S f ‘%
O e du,
™ 2 - -
Indication of th&Pmof Let
\‘

P(IJ P{Z} Pfs) P(‘“

it .

e the pmh’tl;ﬂltles of having m white balls in # trials when (a) the last hall is white
and fromarh 1; (b) the last ball is white and from wrn 2; (¢) the last ball is black and
fromsgr.rl 1; and () the Iasl ball is black and from urn 2 The sum

) 4

Pon = P(l) +P(2) _[_P(.ﬂ + P(»ﬂ
represents the probability of having exactly m white balls in 1 trials. The gemerating
functions of probabilities PL Jn satisfy the following equations
0, = el + o)
5‘»21 = gt{ei? + ﬁﬂm)
o8 = gell + olth
pley” + of)

whenee it ean be shown thab they all, as well as their sum—the gencrating function of
P, —satisfy the same equation of the geeond order

N

Znir — fZag1 -+ pg(t® — 1)z, = 0.

*
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Setting ¢ = ¢™, one of the charasteristic roots will be given by

{1 —2m)€u—4pg(1—3pq)%’ + e
E

for small «, while the other root tends to 0 as u — 0. The final conelusion ean now
be reached in the same way as in Examples 1 and 2, pagea 297 and 301.
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CHAPTER XV

NORMAL DISTRIBUTION IN TWO DIMENSIONS. LIMIT
THEOREM FOR SUMS OF INDEPENDENT VECTORS.
ORIGIN OF NORMAL CORRELATION A

1. The concept of normal distribution can casily be extonded o two
and more variables. Since the extension to more than tv.Q varlables
does not involve new ideas, we shall confine ourselves to the case of
two-dimensional normal distribution, NG

Two variables, z, ¥, are said fo be normally dlstx;buted if for them
the density of probability has the form

e AN
where KV
¢ = az® -+ Zbay + o U + ey + f
is a quadratic function w&\m,dlgralndﬂmmyglpamtwe and infinitely large
together with |z} 4 |y|. This rcqulrement is fulfilled if, and only if,

apk e 2b:cy + ey?

is a positive quadratic f,@fzm\l. The necessary and sufficient conditions
for thig are: L\
rona > 0; ac — b2 =A >0
MK
Since A > 0 (gven’a milder requirement A > 0 suffices), constants Zo, 3
can be fou d"éo “that
‘3 alz — zo)? + 2b6(x — )y — yo) +ely — yo)t + ¢

' 1dentﬁlc}dly inz, . [t follows that the density of probability ¢-¢ may be
presented thus:

g = Keole—z)—B{z—m){a—wl—ely—yo)?

The expression in the right member depends on six parameters K;
a, b, ¢; oo, . But the requirement

f _: f _:e—*"dxdy =1

reduces the number of independent parameters to five. We can take
a, b, ¢; 2o, Yo for independent parameters and determine K by the condition

an o
Kf f g—ﬂ(t—":n)"—%(a:—:an)(y—yn}—c(v—ynﬂdxdy =1
—wJ—=
- 308
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which, by introducing new variables

E=x—xu, N =4 — i
can be cxhibited thus

K [ sty — 1,

To evaluate this and similar double integrals we observe that the positive
quadratic form N\

at? + 2biy + cp? OV

can be presented in infinitely many ways ag a sum of two squaréé

at? + 2bén + en? = (aE + 891 + (vE+ 571)2 QY
whence . \
a=a*+ v c=pg4 8 b—aﬁ"l‘Tﬁ
and ,x'.\\’
(@b —py)2=A_ L&

By changing the signs of « and 3 if n.ecessarjr; ‘Vire can always suppose
Wymck&;}a:.ﬂl}q’r%org in
Now we take
u—a5+,@ ﬂ=72+5n
for new variables of 1ntegratml} Bince the Jacobian of u, v with respect
to & »is 4/A, the Jacoblan\of £, v with respect to %, » will be 1/4/4 and,

by the known rules
N \ J
Pt \th—on’ — e—ttvigydy w1
J— wf é v \/—f— .,,f \/_
Thus J;.\
NS K VA
"'\’,; __.__W =1, K = .

o) V3
That is, the general expression for the density of probability in two-
dimensional normal distribution is

“r 2
ac — b g—a(:v——zn}’-—ib(x—:a)(v—ﬂn)-d(%r—%}"

al

2. Parameters a,, 1y represent the mean values of variables z, y.
To prove this, let us consider

E(x - xn) = if (.7: —_ )g-—ﬁ{::—xn)’—%(z—zo}(y—m)—a(wyn)’dxdy_
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To evaluate the double integral, we can express x and ¥ through new
variables u, v introduced in the preceding section. We have

x_xn=6u—ﬁv’ y_y0=—'yu—i_—av
VA VA
and
Bz — x) = \/_ _wf (fu — pre"vdudy = 0,
whence QO
E(z) = KoY
and similarly . N\

E@W) = . \ &

3. Having found the meaning of x;, ¥, we may oonstder instead of =, 4,
variables ¥ — @, ¥ — ¥ whose mean values = O\ “Denotmcr these new
varinbles by 2, ¥ again the expression of the dendity of probability for
z, y will be: \\

Vi B

— e—o:“—?@:y—v cy!
T

It contains only three paymmeﬂmsa,ﬂptb,aty ofifind the intrinsic meaning
of o, b, ¢ let us consider the mathematlcal expectation of (x + M)?
where A is an arbitrary constants We have

E{z + M) =3@]' f (x + hy)le—sevsiidudy,

or, introducing u, v, deﬁned as in Sec. 1 as new variables of integration,

Blx + M)t = *&f f [(8 — M)%2 + 2(8 — M)(—B -F hadur +

\” : + (8 —ha)etidudy =
\C _ f f [(6 — M)+ (B — ha)flute—vidudy =
\‘;.. _52_|_'32 oB + v vt 4 o
S Taa o "B TN
But
&+ 8 =, 7+ @ =g, af - v8 =b,
whence

B + 2\B@y) + MEGH) = & — a4

and since \ is arbitrary

B@) =g Blay) =~ B = 5%



Spc. 4] NORMAL DISTRIBUTION IN TWO DIMENSIONS 311

On the other hand, if ¢4, ¢z, and r are respectively standard deviations
of 7, y and their correlation coeflicient, we have

E(z%) = o}, E(zy) = rowy, E{y*) = 6l

Henece
c _ ., a _ b
TR ox T A = —rews
and
— h2 N
“‘ﬂT‘zb = oko3(l — 1% R
O\
or O
T () >
Finally, \ !
1 r N\ 1
“= 2031 — %)’ b= T Zewea(l — r")’.\*’.\.\\c'_ 203(1 —~ %)
— 1 ’0~ \
A= 53
v Zorws\/ 1,~—\7‘3
With these values for a,“?)\f\g,'da],aﬂ&%%f%oﬁ&iﬁty of probability can
be presented as follows: N\
AN 1 TNt & 4
1 \_2(1—:-3)[(-71) —tg ot f‘,) ]

g

Zraioen/1 i’\i‘z

and the probability for@ypoint x, y to belong to & given domain D will be
expressed by the déubleé integral

I 1 2%t
OF _ffe—m-ra[(a) -
?‘?( VI (59

eXtend{‘:tiféirer D,
43\ Curves

_ 1 |f= ’ ry¥ (E"-Y] = { = const
31 — rﬂ)[(a‘) e n e

are evidently similar and similarly placed ellipses with the common
center at the origin, For obvious reasons they are called falhpses of
equal probability. The area of an ellipse corresponding to a given value
of 1 (ellipse 1) is

%L (2) ,.]dxdy

—h-r—_- = 2‘}1’{0’10’2‘\)‘1 - ?'2-\
A
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whence the arca of an infinitesimal ring between ellipses { and 1 4+ ¢
has the expression

raoan/1 — ridl.

The infinitesimal probability for a point x, ¥ to lie in that ring is
expressed by

ewdl.
Finally, by integrating this expression between lmits [y and lo X b, we
find &
e—f; —_ e—Io X W
O

ag the expression of the probability for x, ¥ to belong to the ring hetween
twoellipses , and &, Ifl, = 0and L =,

1—-e? "”:‘\V

gives the probability for z, y to belong to the'ellipse L.

If n numbers I, &, &, . . . Iay are detetmined by the conditions
F 4 "3 1
—1! — s~ — 01 — U — 1= N, = o la_z — ol =
1—c¢ e € € e € g it = Cy

WW W dbraulrfn ary.org.in
the whole plane is divided into®n + 1 regions of equal probability:
namely, the interior of the ellipse?, rings betweenl, Iy; s, Iz} . . + In—z, In
and, finally, part of fhe pline outside of the ellipse I, 1.

5, To find the distribution function of the variable z (without any
regard to ¥}, we must\bRke for D the domain

\—*w <z <1i —w <<y < F».
Asthemteg((ﬂ\

' sl (B-2) +a-m(2)'] _
2WN{ \/1 == ?&f J‘_ we T 1 dxdy,
;= 1% . 3 1 t '-_x_’-:’
Q mf. N . f_ AT salvﬁ;f_f e

we sce that the probability of the inequality
x <t

is expressed by

1 . _=
e 2y,
0'1\/51: —~ =

Similarly, the probability of the inequality

Y <<
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is
1 M

e Zoidy,
eV 2r ) . 4

Thus, if two variables z, y are normally distributed with their
means = 0, each one of them taken separatcly has a normal distribution
of probability with the common mean 0 and the respective standard
deviations o1 and ¢».  Variables # and y are not independent except when..
r=0. For if they were indopendent the probability of the pemt

z, ¥ belenging to an infinitesimal rectangle Ko \
I<a<t+d: r<y<t+dr O
would be _ A
1 A LY
2012 Zos? N\
%01028 : didr, )
whereag it is o\

1 e - E_(-f-]-——f_’) [ (%) ’ w vz Nﬂ‘x) ]dtd'l'

2mairey/1 — 12

and these cxpressions are diﬂeuen,ﬂgedm@}fﬂgrgﬂ{‘hus, except for r = 0,
normally distributed variables are siévessarily dependent in the sense
of the theory of probability. Dependent variables are often called
“correlated variables.” In particular, variables are said to be in “normal
correlation’ when they are zihally distributed.

6. The probablhty of eﬁultaneous inequalities

X <z < X, y<i
s Tepresented by, 1{&» repeated mtegral

Y

2
x _= t .._1_[ - ”z]
.\ S f ¢ By f ¢ Tl " | gy
'«%ﬂ'ﬁim\/l — 72 Iy —w
Y\
w}ule\§
x &2
e—le’dx

1
0'1\-‘

I8 the probability that z will be eontamed between X and X’. Hence
(Chap. XTI, Sec. 10) the ratio

1 J;{Xie -%dxﬁ we—%zs(;—rf)[ypr:;::]‘dy
o2V 2r(l — 19 J; ¥

tan be considered as the probability of the inequality
y <t
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it being known that x is contained between X and X’. Considering X" ag
variable and converging to X the above ratio evidently tends to the
limit '

1 J"‘ e*m[ﬂ‘ﬁx]“dy
oy 1 - ?"2\/ D J_ -

which can be considered as the distribution funection of ¥ when x has a
fixed value X. Hence, y for £ = X has a normal distribution with the

standard deviation
Ko

e/ 1 — 7% O

and the mean _ NG

Y = r22x,
o1
)
Interpreted geometneally, this cquatlQﬁ represents the so-called
“line of regression'’ of % on x.

In a similar way, we couclude that for y = Y the distribution of z
is normal with the standard. dbﬁaﬁb{ﬂl y-org.in

171.‘\/1 — 7?2

and the mean ~A
~
\ \ X = T‘?Y.

"N/
This equation ,Répresents the line of regression of z on y.

LIB@T THEOREM FOR SUMS OF INDEPENDENT VECTORS

7. 80, far normal distribution in two dimensions has been considered
abﬁtrs}cﬂy without indication of its natural origin. One-dimensional
ﬁqrmal distribution may be considered as a limiting case of probability
distributions of sums of independent wvariables. In the same mannef
two-dimensional normal distribution or normal correlation appears as 2
limit of probability distributions of sums of independent vectors.

Two geries of stochastic variables

Ty, Ty, . . . Ta
Yy ¥ o o 0 Ya
define n stochastic veefors vy, va, . . . v, so that 2y, y; represent com-

peonents of v; on two fixed coordinate axes. If

E(x) = a¢ E(y,) =
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the vector a; with the components a;, b is called the mean value of v,.
Bvidently the mean value of

v=wvi+WVv+ . . +v,
is represented by the vector

a=a+a+ - +a,

and that of v — a is a vanishing vector. Without loss of generalit
- we may assume at the outset that

E@)=Eg)=0;, i=12 ...n, O
in which case E(v) = (. Vectors vy, ¥2, , . . v, are gaid tpilz}e inde-
pendent if variables z;, y: are independent of the rest of {he, variables
x;, ¢; where § 5= 4, \\

In what follows we shall deal exclusively with indepéndent vectors.
8. As before, let zx, y4 be components of the v@or

N\

vk =1,2, ... 00
Then ' AV

X =viy w}dl%‘a.l!.lfﬁ ALY rgin
Y =g+ ggoh - -+

will be the components of the §urd )
v =.7§g— V2 + oo + Vas
If &

E(xPEEys) = 0
(@)=t B =on Bl =de
then ‘,\\
N EX)y=0, E¥)=0
~O BX) =bi+bt - Hbha= B,
N O E@) =ateat - Fa=0 _
BXY) =di+ds+ - - +dn=1aVBVTo

because
Bleg) =0 # i#%
variables z; and 3; being independent.

Let us introduce instead of variables =z, w(k =1, 2, .
variahles :

. . 0) new

‘Ek:\/g;
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and correspondingly

X
vV B,

instead of X, ¥. We shall have:

E(ty) = E(m) = 0
b .

8= 4] g =

R
/Ch

ok
B -5 Ba) =g

* Bﬂ £ Cﬂ O\

and <y
E(s) = B() = 0 O

E(s®) = E@) =1 N

E(sa) = ry. ,: ’
The quantity 7, the correlation coefficient of s aﬁ'(f&, is in absolute value
é 1. We define B )\\.;

¢(u~_| ‘U) - E[e\if!x’%{y’}

as the characteristic fﬁ{l{gtiodlbogﬁ}he Vé@t‘(ir s, o.  Evidently ¢(u, 0) and
¢(0, ) are respectively the chara tersficc finetions of s and 0. Since

ei(ua-l—ucr) o ei(uEl—]-w'rj‘;séi(us:—}—uqn) PR ei(uin—l—‘mn)

%

*

and the factors in the right&ha;ld member represent independent varia-
bles, we shall have o)

# \7

¢lu, 1) = E}s\ﬂ;ﬁﬁwﬂ) - Bleiugrte) . . . F(pilubitvam),

9. For what, {ellows it is very important to investigate the behavior
of ¢(u, v) when'n increases indefinitely while u, v do not exceed an
aa'bitra,ry'buj;’ﬁxed number [ in absclute value.

Q>
\ Elzil® = fi, Blys|* = ge
\i‘[}d’”
Hh+ft - +fa
Bi =
ntg+ -ty
i} =
If w, and 5, tend to 0 as n — «, wo shall have
(1) ]¢(u’ v} — g-§<uwmu+u=>l <& gAlamtu) —
provided '

ul 2%, [l =1
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and » is so large as to make
ed +9b) < 1.

Since

gitubitnd = 1 4 (uds + vme) ~ %(ufk + me)? +

5
f- M; [8] < 1,
O\
we shall have:
b 2d .'\ \
Hufptemty = — ‘_k g _ ko _ Ck o ¢ \\ A
Ele ) =1 3 B“u 2——3,.0,,w 27“@) + O
¥ N
+ 6—E|u.§k +\%=2n{‘ij~ 19l <1
On the other hand, \
.\\.;
. bi i 2dn/ ﬂv—-fivi
1 — b wt — 2d; Cr p? = ¢ 2B,‘_ %ﬁ AN
2B, ov/BuCn  2Ca \Y,
W W, dbraul%aJ[Ee&&Lq_ ynk)g]g Iar:l <1
and so _ "“

VL IS L N L3 g’
B(gitony = ¢ 75 iaged 20 4 LB + om) 0 +
LA 8 ,
) + EEM& 4 wmf3,
N
Furthermore, \:\w

'M(uzk - on)? £ D} + Zuled 1) < 1
g bs 3 2) = B gl Ejtim] < wind
E(8) = B <wl E(pt) = C. < ui, Exmz 103

(Blugs + vn)?? < [Blug + o)’ S Elut. + vnl®
13
Eluty, + omf* S 48 ({;& C%)'

Taking into account these various inequalities, we may write

be 2d: uv—-ﬁ%—nﬂ
Bleiwhtmd) = ¢ ~38.  2/Baln " (140w
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where
loel < 54 7 e zS(f* + g*) < 41“(f’“ "f'gs)
Finally,
$(u, v) = e 3rtirmvti(] Lo} (1 +o2) » - - (14 02)
and

N\
!¢(u’ E’) — e—}(u’-{—bnuv-f—v‘)l < e{a’1|+iaz|+ -t 1 < 64”(@:\"’11'“) -3 1
L\
as was stated. A\
10. Theorem. Lef P denofe the probability of szmultaneaus Tnequalities

\

R
Provided r. remains less than o fived number o <} %n absolule value and
the above infraduced quantities w,, 1, tend 1o 0 as {cw% w, P can be expressed

as \‘

T@D@ f ‘%aﬂhﬁpar‘? 5)(:::; i dtdr + An

where A, tends to 0 uniformiy minb tl, Toy T
If, in addition, r, tiself te&ds to the imat r(|r] < 1)P will {end wniformly

£ \ N’
) i \ 31 ng—i-ﬁﬁl—?iug_%“ +,.z‘]dzd'r
211"\}" " — 2 ’

Proof. \th trymg to extend Liapounoff's proof to the present case
we mtrodulsqan auxiliary quantity IT defined as

’\..\’:' I = E(EJ;E (u; )du . Iu e_(ﬂ_}f)gdy).

Usi g the inequality

vl

one can eagily derive the following inequalities:

f 5 . J" 5V — <

MY 4 Y O 4 o))

o = 8 < {y; 0= 7 < 1.

to

for x >0,
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if
(3 . b = 8 < iy To =g <7y

and _
@ _h-ﬁ—wj:‘e ‘(“ff)’du-l:‘e‘(?)'do < %(e“(“—f)’ +eo (5 4
+oCF) 4 (°"')')\

if at least one of the inequalities (3) is not fulfilled. From the definifion

of M, P and from (2) and (4} it follows that 2\ \
P - < 38(e CF) 4 (5 1 () 5 ("_ ))
But referring to (1) and setting M’\ %

gitantan) — ] = @, ()

we have by virtue of the developments in Chap XIV Sec. 3,

® P - 1 < 2biofB mwg;éi

b. Replacing ¢, 7, by variable quantltaes t, r and taking the second
derivative of I with respect to t"and T, we get

E— a) (r w)')
dtdr é\F( (
On the other hand \
(L_s) (r_} = ﬁf f iyt ) g ktutr o) gituntoduggly,

whe ’.
nee NS

~\J s
© \ \ % _ I}lﬁf" J'” g_%(“’wi)e”"““"")‘f’(“r v)dudy.
Here we substitute
B{u, ) = e~ duHrartsd 4 gy, v).
For all req] u, v
{g(u, !J)[ é 2.
Blul <1, jo] <1, where I is an arbitrarily fired number, and » is large

enough, we have
g, )] = aa(?).
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Hence, the double integral

B e »t X
?‘ilﬁffe 4(u + )e—l(tu"l'f‘l-‘}g(u’ ‘U)dﬂd’f)

extended over the region outside of the square |4 = I, |¢| = Zis less than
K | B -a
1 2wt 1B e f
90 fe duty = ;J; e rdr < 5
i pE={t 2\
in absolute value. The same double mt(‘grai extended over the square
fu] <1, [o] £ 11is less than \\ /
‘../

I 2
?an(l) 8 )
in absolute value. Thus, referring to (6) 9

w o Bt | \J
421-[ _ _1_ e—?(uz—ha) glut 4 2reuy e )e’if‘“+rﬂ}d'u.d?‘ +R
didr — dntJ-.J-w o\ '
and W
wiww.dbr aullbrét Y. orghm

&) < B+

Now -\

\l

e__(ut*:hs— 1 - —(u? + v?); A <1

.‘\)
.\..

B
—}(u’-!—‘lruuw-l-'&") - v A S
1%2‘[ ﬁme (u? + vHdudy ( FIji %(1 — &)
H(}Im&

3::;; 471.2‘[‘ f e-v,—(uH—2rnuﬂ+v9)g—1(5“+7")dudf} + R'
and
12 i
) h2
RrIr “atdn ¢
R < Tz“ o+ A2 + 4r(l — a?)?

By transformation to new variables

E=u+rw; g =uvv1-—-1r2
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the fomgoing double integral becomes

SE— T T,
e VI-rd ddy =

S
= e M

V1=

I 1 S = e D)
_— = —_—_——— fn )
dtdr  2p4/1T — 12

Integrating this expression with respeet to £ and r between hm:lbs ‘bu )

(& 2rnir +f=)

so that finally
+ B N\

and Toy Ty, We get. \ ;
- 1 f1 {7 __1_(3_2““?*_’2) "'(’.,..
O . = N e aak o
21r\/1 — 12 Jre \
where \
7 \.a

&'\. 2
8) el <t — W) — fni ROES T + ,_____3]
dbraufrfn ary.org. l#’r(l — a??

Henee combining inequality (5) wﬁsh (7) and (8),

J‘h.]‘ﬂe P )[; — 2oty 417} dtdr + A,
21r'\/1 — i
\

N

O (M)=

where

8 h
|A | < [2 “+ z(t&"* tﬂ)(fl —- Tu):la'n(l) + —F e {v—; +

¢ ; T, — Tol At
A ’§ ‘|" (tl - to)(fl e Ta)} +h\/_ +—'_tg)(__")—
’. ir{l — « 2)2

s

ﬂenng b, £1; 7o, 71 as variable and denoting an arbitrarily large
er by L, we shall assume at first that the rectangle D

h=s&l; nE0ET
18 completely contained in the square @:
|S| = La I{'r[ 5 L.

Then, taking % = I~ we shall have

A AF, 22 R A —g 2 \/Qgrsla + _;I‘jtl_
a < (2 + 7)0&:(1) + le 4(\—/_-?'_—3 +4L ) + 3

(1l — a%)?
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Given an arbitrary positive number ¢, we take [ so large as to have

t _8 -1 g-1
Ie—a(;%—_l 24 -m) + 4212 _-“__,3 < %e.
Tr .

x(l — a?)?

After that, since an{I) — 0 asn — « (for a fixed I) we can find a number

no(e) so that
-1
ald < (2 + 4“”) ~

for n > ne{e). Finally, we shall have A
|Aa] < €

A
?

as soon as n > mele); that is, A, tends to 0 uniformly ib’any rectanglc D
contained in the square ¢ with an arbitrarily lacge sﬁc 2L,

¢. To prove that A, tends to 0 umformly 1{0. matter what are #, b;
o, 71 We observe that the integral

J‘J prip= r ’)ifz 2rn‘f+fi)dtd'r
271"\/]\;\!\.«\;? uhbl»ary org.in

extended over the area outside, pf 0 becomes infinitesimal as L — «.
Accordingly, we take L so large as to make this integral <¢/2 (no matter
what # is) and in addition g have L™ < /4. The number L sclected
according to these requiréments will be kept fixed.

Let D' represent thﬁi}aﬂ; of D which is inside @, the remaining part or
parts (if there are any) being D”. Let P’ and P" denote the probabilities
that the point g"¢shall be contained in D’ or D", respectively. Also,
let J* and J” i\b'é the integrals

N '

'."\ 1 '-21-—_,_”;-{!3—2)',;11' +r2]
A %y ﬁ?f f ¢ M dtd
extended over D’ and D”, respectively. By what has been proved, given
¢ > 0 a number no(¢) ean be found so that

P — J| < e
for n > ne(e). Now
P=pP+P, J=J+J
whenee
1P —J} <& P’ J”

for n > mo(e). Since by Tshebysheff’s lemma (Chap. X, Sec. 1) the
probability of either one of the inequalities
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s > L or el > L

is less than 1/L, we shall have

2 e
Iy = <.
P’ < 7 < 3
Algo,
Jt < %r N
whenee O\
PR\
1P —J| < 2 A by
for n > nole); that is, the difference \: )
“_{“‘1'+r’};itdf

1 f1 v 1 (
P - 7_._‘]‘ f ¢ 2l-m?
2rv/'1 — riJe Jn \\ g

tends to 0 uniformly, no matter what &, {r)gs; 71 are.
Finally, the last statement \gf dE}:lt_% t&ggg;@moft%piears as almost evident
and does not require an elaborate pno%:g $ oy LR

11, The theorem just provedieohcerns the asymptotic bebavior of
the probability P of simultaneous inequalities

foé\’s\’< iy mEe<mn

which, due to the deﬁpi!%n of s and o, are equivalent to the inequalities

Bl <21+ 22t 0+ 2 <6VBa

:{M St yt ot < 1Y Ca
From ‘qh’é\g'éometrical standpoint the above domain of 8, ¢ is a rec-
tangle. . But the theorem can be extended to the case of any given

dom”’i\h:R for the point s, #. It is hardly necessary to enter into details
of the’proof based on the definition of a double integral. It suffices to

state the theorem itself: .
Fundamental Theorem. The probability for the point (s, cr). to be
located in q given domain R can be represented, for large n, by the integral

--wl——«-—f 6—2(11"")“l“2“&+1’)dfd1'
21 — r?

extended over R, with an ervor which lends uniformly to O as n becomes
wfinite, provided '

w,——)O, ﬂn"_"oi
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while for all n : .
, [ra] < @ < 1.

In less precise terms we may say that under very general eonditions
the probability distribution of the components of a vector which is the
sum of a great many independent vestors will be nearly normal.

The first rigoreus proof of the limit theorem for sums of independent
vectors was published by 8. Bernstein in 1928, Like the proof developed
here it proceeds on the same lines as Liapounoff’s proof for sums of
independent variables. Moreover, Be rnstein has shown that theMimit
theorem may hold even in case of dependent vectors when celtam addi-
tional conditions are fulfilled. O

12. A good illustration of the fundamental theorcm. 1;\ ‘afforded by
series of independent trials with three alternatives, B, F G For the
sake of simplicity we shall assume that probablhf‘tes of E, F, ( are
p, g, rin all trials. Naturally
AY;
ptagtr= 1@

In the usual way, we assomato with thege brials triads of variables

Ty, BEVEY- dbra(glkbf'irmot% in, )
so that Q N

z=1lor0Q accordiqg:ag E oceurs or fails at the ith trial;
y,v =1lor0 accordmg as I oceurs or fails at the ¢th trial;
=1lor0 awg{d.mg ag (7 oceurs or fails at the 7th trial.
Ev1dently
O7 By =EE) =
N& E(y) = B(yl) = ¢

so that yectors v; with components

'"\\“\ E=x—p m=w—¢
hivé their moans = 0. The independence of trials involves the inde-
pendence of vectors vy, Vo, . . . V.. Hence we can apply the preceding

considerations to the vector

v=vitv:+ - v

with the components

X=bt+b&+ -+ &

- : Y=pm4+n+ - + .
We have

B, = E(X?) = np(l —p);  Co= E(Y?) = ng(l — Q-
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Moreover,
E(tm) = E(xy) — pg = —pg
and
E(XY) = r.v/Bav/C = —npg
whenee
SV e er ) \""\

The quantitics denoted by fi, g+ in Sec. 0 are in our case \

fi= Bl =pl -2+ 1 —pp° o~
g = Bl =g - P 0@ T
Henee O
_pl—p+ (4 —p)p? il z9 + (1 — ag?
a wpil — pt " N\ - o

and the conditions . OF
db libftal i
\2::.’3 O,rau.']f%}fiyt?l g.in
are satisfied. The fundamental‘;’oﬁeérem, therefore, can be fmpplied.
If k, I, m are the respective {reqhencies of events B, F, G in = trials, the

quantitics X and Y representithe diserepancies
M=k — np, p=10—ng

Introducing the thil:d:ai“s’crepancy

9\ _ _
\V y =M nr

we shall hayess”
RN AFptr=0
80 th@‘mm determined when A and p are given. The last two quantiti.es,
however, may have various values depending on chance. Concerning
them the following statement follows from the fundamer‘ltal thepmm:
Theorem. The probability thal discrepancies X, p tn 7 trials shall

simultaneously satisfy the inequalities
avn < A< PRV Bovn < p < gvn

tends uniformly, with indefinitely increasing n, to the limat

' 1=t B! 2
1 _J‘“‘J""{ﬁ 454 dads
2/ parJes Jao
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where, to have symmetrical nolation, v 15 @ variable defined by
a+B+r =0

On account of symmetry, perfectly similar statements can be made in
regard to any two pairs of discrepancies \, u, »

Qince the fundamental theorem and its proof can he extended without
any difficulty to vectors of more than two dimensions, we shall have
in the case of trials with more than three alternatives a result perfectly
analogous to the last theorem. ~

Theorem. Each of n independent trials admits of k allernalives B,

Es, . . . E; the probabilities and the frequencies of which respeotz'bely are
Py, Doy -« - Ps and ma, ma, . . . M The probability that, the discrep-
aneies mi — npdt = 1,2, . . . kb — 1) should salisfy sumﬂltaneously the
inequalifies D

aN'n < m; — np; < ﬁs\/ﬁ'"\\
tends uniformly, with indefinilely increasing n, tg\tﬁe lemit

IE“’

A -1
I J S P bty - - - b
(211_) 2 \/ o brauhbr‘ ¥0rg.in

PPz

where
te = —(tg+tn+ s )
From this theorem, by, zes}rtmg to the definition of a multiple integral,

we may deduce an 1mpb(\ba:nt corollary: Let P, denote the probability of the
tnequalily ¢

(my — nplji‘_'_ (my — npy)? PR (ms — np)? _ 2
ﬂ-p,{ N P
Then, as m}\éﬂds to tnfinity P, tends to the limat

5 f fe Gt +%:)dtldt2 e g
Tﬁar \/pmps =

where the tntegration s emtfmded over the (k — 1) dimensional ellipsotd

8§ .8 &
= it [ -, 2_
p1 + s + + o X
It is easy to see that the determinant of the quadratie form ¢ in
(k — 1) variables is (p\ps - - - pu)~!. Henee, by a proper linear trans-

formation the above integral reduces to

1 Yot et - - - n
E_'_lff o fe o * Liz)dﬂldﬂe <o dpen
(2x} 2 _

|
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the domain of integration being #? 43 4 - - - 42}, <% But
this multiple integral, as will be shown in Chap. XVI, Sec. 1, can be
reduced to a simple integral

&

k-1
9.3

X _éus
—_— 7 =
, E—1 Le ub— 2y,
2
Thus . - A
imP, = 55— fenﬁu'u*"sdu. A
P )b O
The probability . = 1 — P, of the opposite inequality.f’
R
4y i mp)? | (me —mp)? | (mRp? .,
(4) np1 + nPz + + N > X
\\
tends to the limit R

w NS
Ears
e\ uk—~2dy

i
k-3
LA A A W
22 W)}}E‘thfal'y,org_in

and for large n we have an appréﬂmate formula
A\

- 1 .
Qn = Ny f Gdiu u""zdu,
E—-1
“.:.\2‘%_11 3 ) )

but the degree of\#pprozimation remains unknown. In practice, to
test whether t{é\sbserved deviations of frequencies from their expeeted
values are gignificant, the value of the sum (A), say x?, is found; then
by the abeve approximate formula the probability that the sum (4) will
be greater than x? is computed. If this probability is very small, then
t'h“\l'ﬁ‘kitajined system of deviations is significantly different from what
could’be expected as a. result of chance alone. The lack of information
as to the error incurred by using an approximate expression of @, renders
the application of this *“x%test” devised by Pearson somewhat dubious,

HyporrAETICAL EXPLANATION OF EMPIRICALLY VERIFIED CASES OF
Norumar CoRRELATION

13. Normal distribution in two dimensions plays an important part
in target practice. It is generally assumed on the basis of varied evidence
collected in actual target practice that points of a target hit by projectiles
are seattered in 8 manner suggesting normal distributior. By referring
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points hit by projectiles to a fixed coordinate system on the target, it is
possible from their coordinates to find approximately (provided the
number of shots is large) the elements of ellipses of equal probability.
Dividing the surface of the target inte regions of equal prohabilities as
described in Sec. 4, and counting the actual number of hits in each
region, the resulting numbers in many reported instances are nearly
equal, That and the agrcement with other eriteria are generally con-
gidered as evidence in faver of assuming the probability in target
practice to be normally distributed. N\

Two-dimensional normal distribution or normal correlation has*been
found to exist between measurable attributes, such as the lg:n'y;’bh\ of the
body and weight of living organisms. Attributes like statures of parents
and their descendants, secording to Galton, again showy cvidence of
normal correlation. L 0

TFacing such a variety of facts pointing to the existence of normal
correlation, one is tempted to account for it by seiug morc or less plausible
hypothesis. It is generally assumed that devmations of two magnitudes
from their mean values are caused by thé tombined action of a great
many independent causes, each affecting hoth magnitudes in a very small
degree. Clearly, the resvitingdbevidiibary mnden such circumstances may
be regarded as components of thel wum of a great many independent
vectors. Then, to explain the existence of normal correlation, reference
is made to the fundamental ghBorem in See. 11.

)
\ Problems for Solution
1. Let p denote the/brobability that two normally distributed variables (with
means = 0) will have #alifes of opposite signs. Show that between p and the corre-
lation coefficient T'Qltg}olluwhlg relation holds:
\“\‘ r = Co8 pr.
A\ :
2. Vagigbles z, y {with the means = 0) are normally distributed. Show that the
probahiliby for the point x, ¥ to be located in an cllipse

\ b 2 ¥ 2
z x y
R Rk
7L J1a2 Ty
is greater than the probability corresponding to any otlhier domain of the same area.
8. Throe dice colored in white, red, and hlue are tossed sinultanevusly = times.
Let X and ¥ represent the total number of points on pairs: white, red and white, blue
Show that the probability of simultancous incqualitics

T+ eV 3n < X < Tn 4 0V 8Fn; ntaViEn <V <+ 1'1'\/35—&’;

tends to the limit
i '
f f e it iy
V3 to S

agn ~ w,
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4, Three dice, white, red, and blue, are tossed simultaneously n times, If kand {
are frequencies of 10 points on pairs: white, red; red, blue; show that the probability

of simultaneous inequalities

71 ' ' - :
3 11 ] 11 A 11 n 11
= g n <k < — PR i
12 TRt St e <i<p +“\fmn

tends to the limit
13 fhfn e g
£ ] i+ g
2ev/120 ), . ~

48 B —+ o6, R ¢ N\

8. Two players, 4 and B, take parf in a game arranged as follows: Eachtimecons
ball is taken from an urn containing 8 white, 6 black, and 1 red bail; if thisball is
white, 4 and B both gain $1; ~,( ™
black, A loses $2, B loses $4; { ¢ /

red, A gains $4, B gains $16.

Let 8, and o, be the sums gained by 4 and B after # gamea.

of simultaneous inequalitics .\ {
. ‘.. 3
tu\/;’?ﬂ < gn < bV &in; To'\ﬂlﬁsf?}f( on < 71‘\/‘@;

for very large n will be apprnﬁﬁé%ﬁbﬁ@ém@é,’;ym’g-m
Ve [ 7
f 8t B g
. T fo oL10"

L4
Note that the probability of the gfiig\t1ua.]ity $attn < 0 I8 about 0.13—not very small—
80 that it i3 not very unlikely that the luck will be with one player and against another.
6. Concentric circles L3Ny, O, . . . in unlimited numbers are deseribed about
the origin @. Points PyPy' Py, . . . are taken at random on these circles. Let B
be the end point of theector representing the sum of vectors OF,, OFy, 0Py, . . . .
Y7y g 1y, . . . ard’¥adii of Oy, Oy, Cs, - . . and the condition
N\W
\,\\"ri—i—rg-i—--»-!—r,f —0 ag n— 0
A oS I MR o £
is fulﬁl«}ed,;ghi)w that the probability that R will He within the eircle described with the
radiusyg about the origin will be very nearly equal o

gl'sow that the probability

1 — ¢ rotrt - - - et
for Targe n.
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CHAPTER XVI

DISTRIBUTION OF CERTAIN FUNCTIONS OF NORMALLY
DISTRIBUTED VARIABLES ~

1. In modern statistics much emphasis is laid upon distributions of
certain functions involving normally distributed variables, Su{:ﬁ“ﬁis—
tributions are considered as a basis for various “tests of significance’
for small samples, that is, when the number of observed data is small.
Bome of the most important cases of this kind will be cgnéidered in this
chapter, N

Problem 1. Independent variables m, a, . W\ . are normaily
distributed about their common mean = 0 with“the same standard
deviation 0. Find the distribution function ef the sum of their squares

s=al+a2i+ - {Fazs
Solution. The inequality”’ 'db"a"_‘gm’ﬂry‘or &.n
At
AV <2< Vi,

the distribution function B?‘x? is _

W - v 1
Fit) = 1 ‘L}/\'é_g’dfc -1 f‘e_"”’u Mu for t20
N ;

being equivalent to

oV 2w I\ o\ 2r
'S F{t) =0 for 1<Q.
Hence, the Gharacteristic function of any one of the variables 2%, zi,
. zﬁ.i‘s{f Ny
~\J .
N = 2 (e G0y - ..l__(i - a)*é
) = a*\/ﬁzr-J; ¢ ¢ o/ 2\2%*

and that of their sum

1 1 .\-2
= e—— ‘!‘ 2'
§D(t) (O‘ \/ﬁ)n(zo's )
Consequently, the distribution function of & is expressed by
. 2 —1; g 1 — ev—stn
Ry = ¢ + 92 f AR
) ' i F — W

831
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and it remaing to transform this integral. To this end, imagine a variable
distributed over the interval (0, + «) with the density

Its characteristic funetion is A\
(<r\/§)‘““‘(i — z‘t)_g ."‘:.\ '
2 '\

and sinee the distribution function is given a priorl, we ‘must have for

t=0 : '..\\"
ﬂ?—_ﬂf‘e—%ﬁﬁ_ldu = const. + (6\2/; Fﬁ{’m 11” i - dp.
I‘(é—) o - . | \‘ —"“w(ftz - z’v)i
Hence N g '
WO dbraubht ary org.in .
F(t) = const. 4 1' fte 2“’ug“1du.

~£nf )ﬂr( )

The constant must be —\l‘} since F(f) as well as the integral in the right
member vanishes for #% ¢. The final expression is thercfore:
<&

: G
Ft) s f e 'y for 20
)
& F® =0 for {=0.

Th{iﬁgobabﬂlty of the inequality
af taf+ -+l <

on the other hand, ean be expressed directly as a multiple integral

F(p) ! S d
—_— e - wl T _‘q:n
(rf\/_Qw)“f f f e

extended over the volume of the n-dimensional sphere S
i+t <t

By equating both expressions of F (t), we obtain an 1mportan1; transforma~
tion,
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z#-l—zs"-}— © a2
(1) ff f 2. Ildxs . da:ﬂ —

If Flz? 4+ 2t 4+ - - - + zI) is an arbitrary function of
=af+ai+ -+

the integral \

B G - ke e ol
nff f 2 P($2+ “1‘“52)0'@1&-’52 s dz,
) ..‘\

extended over the whole n-dimensional space rcprcaents the mathematical
expectation of F(u). On the other hand, the digtribution funetion of
u being known the same multiple integral wﬂl\Be equal to

LN\ 4

= (N n=2
L j € ,{"’Ftu)u "2 dy,
(J\/‘)nﬁ(‘g}'_ﬁ LT auhbraly org.in

Taking in particular ¢ = 1, F,(u) = e‘“‘% we get the formula

(2) IJ . f (T\‘kv“ e teVEE g ey - - de =

which m:].l bo used later.
2. Problem 2. Variables 2y, %3 - - -
D(haofmg their arithmetic mean by

T e R .

=T
1]

., are defined as in Prob. 1.

find the distribution function of the sum _
S= (o @ @9t
Solution. The probability of the inequality
<8

I8 expressed by the multiple integral
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1 . _mstwtt +m‘dx g ;
Fty = —— R * Ty 0 v odi,
=} I | o

extended over the volume of the n-dimensional ellipsoid

(mr — &)+ (@~ )2+ - - + (2 — 87 <L

Let
Ty 8=, T 8§ = Uy T 8= U,
whence ~
Uy U+ 0 U =0 \
and L\
Bt b=l b ol g

Taking 41, %, . . . s, and s for new variables, we n}géi’:'ﬁrst find the
Jacobian J of z1, ze, . . . z. with respeet to i, us, J‘k"" 1, 8. It 18

I 1 0o o- ol [t 1 86 oW .0

1 0 1 ¢g--- 0 101\\0
L L il PG S PP

2=

R SRR 1. WA ? ¥§%6;1~01n0
1 -1 -1 —1 >R o

In the new varables the expreasiini Yor F(t) will be

Fl) = — 2 ) e R d
1) = C o We = * sdudue + ° ¢ Qln-
(ov/2r )“f f \\f . '

and the domain of mﬁegratlon in the space of the new variables is defined
by xf\“’
\V — D < § L

A bl bt )t <L
After p(:(fortmng the integration with respect to s, we get

RN

bt e bt
e )w‘—lff f T T T duydug - ¢ ddbe

The quadratic form
p=uitui+ - - fal,i+mtunt o+ owan)?

can be represented as a sum of the squares of (n — 1) linear forms in
variabies u,, %3, . . . thna:

p=0i oo - vl

The Jacobian
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a(ﬂ-lr Vo, .. 9n—-1)
a(ul’ uﬂ; LI 1.&“_1)

is the square root of the determinant of the ferm ¢, which is the same
as the determinant of linear forms

1 d¢
3 3w, =2ur+w+ -+ U
13¢
3 3u, =+ 2u+ 0+ U A
1 3¢ L V)
Sh Wt e (T
Now, in general _ R N
p times \ ’mj\i'”
ML - - -1 N
- -l O
= (= D) ikp — 1)
1S EREEIRID Y
80 that the determinant Ofv\ﬂﬁvﬂ’migﬁ'lb% org.in
3(?}1, Ua, “s vn—-I)
6(%1, My s u"‘—l) .\/E
and O
T S B
:"atvl, e, * 7" ﬂu—l) \/ﬁ
Therefore, takjng~z’{1,}v;, .. . vu_y for new variables, F(£) can be expressed

as foIlow»; K x'\”'

w15+ss=+ L

Ft f Tt dpdey 0 Ao
() (M/gfr n-t f f

“l\ﬁe ﬁhe integral is extended over the volume of the sphere
O ST +oiy <t

This multiple integral is exactly of the type considered in the preceding
problem, and it can be reduced to a simple integral as follows

T ke A .
e fe 2a? dodyy <« * dPaa =

n=1
2

T

=r(n )

¢ _u n—3
fe 2%y 2 du.
0
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After substitution, the final expression of F({) is

¢ __¥ 23
Ft) = ! 1 fe Ty 2 dy for £ >0
v e
Fit) =0 for t=0.
3. Problem 3. Variables %, %3, . . . 2z, are defined as in Prob. 1.
Ag in Prob. 2, we set N\
PR ok e e ok O
- n :,.\ o
Uy = Ty — & i=1,2 ...n A‘;‘H
and introduce the quantity ,\:
Jﬁ+%+"'+ﬁ ’
€ = S
n N

What is the distribution function of t]:}e”ljéfio

/
%

S Y
www.dbrau@r@aﬁy_org_in
or, whick is the same, the probal:ﬁjit} F(£) of the inequality
M\“\ 8 < fe?

e\J -
Solution. First, ass\?nihg { to be positive, let us find the probability
@(f) of the inequality:'::

:’1\ / 82 te
x:\»'
or O
0\ v
W\ 2
B wltudt o Fuls T
o..\' ®
This probability can be presented in the form
o(f) = ——n—f me—%:\lf(-s)dvs
e/ 2m)" Jo

where the multiple integral

LTS G ke i
T(s) = ff S fe 20? ditidits =+ * dUy—1

in which

Un = —( + Uy o+ ¢ 0 u)
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is extended over the domain
Wb Ui b b )t s

Procecding in exaectly the same manner ag in Prob. 2, we can transform
¥(s) into

1 G . ol ol . T
\I{(s) = WII e fe 22 dvldﬂg v dﬂn-], I\

£

extended over the sphere ) \ )
. ne? \ e
021+9§+"'+”§.—1.5——t§' N
(O
in the space of the variables vs, v3, . . . P41 Forﬂﬁh multiple integral
we can substitute & simple integral O

—1 ns? n ¢ fk—“

o) = H m— nE?
T 2 f te___é_ 3du _ N j’l )nf 2"’5"_%2

n — 1\Jo
T'( 2 ) WWW dbrai‘thbgg‘ Brg

and thus reduce ¥(s) to the forﬁrv
"\n 1 n—2

e T (e
"i_i e Dert n—ﬂdz.
‘I,.(Rl\ I,(n - I)J; :

2

After substiti{tion we can express ¢(f) as a repeated integral
N

\s.l n - na? H gt
o 2n? _ﬁdsJ‘ e 2piE,
“"}(t) = —_ 1)‘L ‘ )

=

&) VeV T Z

"‘\; W
The derivative of ¢(f) is

1

5 w _na?
2n2—= f e‘ﬁ;(l"'a olds =
) 0

¢t = “,/;(n/ﬁ)"l“(n; 1
i) S+
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whence
oo )
( - m(1 + 2")2
Now
- \/ﬁ‘(ﬂ' 3 ) &
o=y =0 | .= &
" ok r() o
50 that ¢ = 1 and &O ’
X §
.
VT 1“( “(1 + zz)
Such is the probability of the agg%%l’%y org.in
.s‘&te

The probability F(f) of the quua.hty
C }
\& s < fe
wilbe 1 — ¢(#) or A

2

but_this s established only for positive {. However, this result holds
fo@gatwe ¢t as well. For ¢ heing negative = —r the inequality

NPy — N\ f ¢ de
O AN w
P V(R T+ e

§ < —71¢
is entirely equivalent to
—8 > 1€

and its prebability is evidently

bl 3

F(—1) = ¢(r) -1- “\;_;:‘((—;1_)]': m(1 + z’)_gdz.

)
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n ) .
Z;r((*“i)ﬂf-"u 42 oy = 1

which permits of writing the preceding expression for F(—7) as follows'

But

F(—7) =

P(ﬂ) . ® n N
'\/;I‘( ; ) 4 A
P(ﬁ) “*\ D

.f\"(l + 2%) 2dz.
n —JINWD
‘\,/11_-1‘( 2} )
82 YT
Thus, no matter whether { is positive or neg?,t):ve; the distribution fune-
tion of the ratio

j—

¢‘ N/

N/

5 e ,.’
www,dbrzg{l{bréry.org,in

or the probability of the inequailitfrﬁ"
img s < e
is given by \\
N\ \ ki3
I‘("é) '] -__12‘;
F)= I (A +2) e
PAY n — -

’\Q': - LIRS
The di'gfr\ibut.ion of the quotient s/e was dlscoverezfi by a 'Bntlsh
statistictan who wrote under the pseudonym *Student, apd it is com;
modly referred to as ¢ Student’s distribution.” The first rigorous proo

was published by R. A. Fisher. ]
4]-;) Problem 4, Variables #, y are in normal correlation. A sample of

L] 13
n corresponding pairs, 1, ¥1; Tz, Y2i - - - Tn Yn 18 taken and the ‘‘correla-
tion coefficient of the sample” is found by the formula
T — &)y — &)
= -_-______,__—————
PG - 9 B 8
where, for the sake of abbrevia.tion,

z1Fxet+ 0 T Ea s:=y1+y3+"”'t!!'.
8*'_—_.__.————”——'—‘—___'} n
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Find the distribution funetion of p, that is, the prebability P of the
inequality p < R for a given R(—1 < B < 1).

Solution, Since the expression of p is homogeneous of degree 0 in
E1, Lz, « . . TpiY, Yo, - - . YaWCCAD 8SSUME oy = g3 = 1. Also without
loss of generality the expectations of x and y may be supposed =0.
Denating by r the correlation coefficient of x and y, the density of proba-
bility in the two-dimensional distribution will be:
) Q)
1 o - Y I) L
(1 — 7o (O

NS *

Hence the required probability will be expressed by the n;u:ltifile integral

P = ff f 2(1 ~dg, - ,‘:‘gg;ndyl C e dy,

(2)(1 % \

extended over the 2n-dimensional domain \*

(3) Z(z: — 8){y: — §) < R\/E(xw— 8)2 Z{(y: — §')%
and W W, dbraulfbl ary org.in
(4) = 2z N zy — Uy

Replacing ;, (7 = 1, 2, \ 1), respectively, by 4/1 — rix;, /1 — ry;,
we can write P thus: \\

1 —
P—( T’\)ff fezdxl'--dx.‘dyl---dy,.

while (3) au@(&) gtill hold but with the new notation for the variables.
Let ug) Set now

AN
@ i — s = u, yi— § =,
then
th s+ 0 U =0, v+ Fp, =0
Introducing s, §"; %1, 42, . . . Un~1 j 1y Vg, . . . Y4y 85 New variables, we

find as in Sec. 2

n2(1 — %)
P = O fj‘ fe 2 dsds’dux v dugadyy - 0 d¥at

where

¥ = ns* + n&'? — 2nrss’ + Zuf -+ Zof — 2r Suw;
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and the domain of integration is defined by the inequalities

—on < § << g —w <8 <
Suwp; < B/ Zuf- Zvk

Now by the same linear transformation the quadratic forms Zug,
Zv} (each containing n — 1 independent variables) can he transformed

into
n—-1
N\
zw?r 2 2 N
i=1 i=1 f:\“\’
at the same time . O
n w—1 (“}s
E’Maﬂe = 210»3{ m'\;
i=1 i=l »)
Proeceding as in Sec. 2 and noting that \\, .
——(s*-i—a 2—-erst d f \ P
nY 1 -7
we find that W dbl‘ﬁ'\'li‘bl ary.org.in

(1 - r“’) 3 _2;, o o
P = O Q\ dw dwn_1d2; 20

where
X Zw? + Zgd — 2riwz
N ¥ l
and the domaiup{mt-egratmn in the space of 2r — 2 dimensions is defined

by \E’;\;‘.
{\ Sws < B/ 2wk S22

We Shah integrate now in regard to variables 21, 21, . - - 2. fOT & fized
systean of values wy, Wy, . . . @wa—1. To this end we use an orthogonal

transformation
21 = eyt + erafe + * 4 e p1faa
22=621§1+022§'2+ © T Can-1fn

Zae1 = Cn-1,181 F Ca, 2?2 + M el S O | G

in which the elements of the first column are
p1 1 uy

L1 = — o
' Vw? oo Fwiy w
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Defining £, &2, . . . £n—1 by

wi = ¢a€1 4 crefa + ¢+ 0 0+ L
wy = cafr  cande + 0 0 0 F Craifaa

I

we shall have & =w, & = -+ + = £ = 0. By the properties of
orthogonal transformations

Zep = Zph, Zeans = B = wh QO
so that for a fixed system of values wi, we, . . . wa the .gém\em of
integration in the space of variables {1, {2, . . . {a-1 will be \/
(5) {1 < RA/ETE 7\

Qs
Thus we must first evaluate the integral O

J=ff - fems6rt +;.._ls)—,m+m;@§-,ld§-2 c A
If &t <0 no restriction is imposed upon, g'hx\. . Eat) 1f {1 > 0, then

{3+ w\&\&,dhrgaﬁfg’k}(ﬁrzgffnl)ﬁ-

Consequently the result of int.eg’trzalifion in regard to ¢z, . . . {n—1 can be
presented thus: 4

7 = co e f ——n +P‘K. g'lff f — LGt - +n_1*)d§2. e dfpn

where the inner ugitegral is extended over the domain

:"\’."' 1
‘\“" G+ +§'§_1<('R'2"‘1)§'%

and ¢ is(‘ji:éonstant. Making use of formula (1), See. 1, the expression of

J :@uéés to

2
riw? - Lot o{z-1)
J=c¢ce? — -—EE-—-—"J‘ n+ hd Jl € Zv“'adv
11(,_.:_‘_?‘ 0
2
This has to be multiplied by
1 2-1 Zw‘
Wl(l P2 g gy e -
and integrated over the whole space of the variables wy, ws, . . . Wn-t

The resulting expression for P will be
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T - T ~Lsos
P = const. — 2" ( ) f f f *Mdw, - - - dw,,
)

(aeor(”

where
1 1 I
— o el 1| =2—1 ¥
M= J;we g ldi‘xj; (Ri ) ¢ Zen3dy,

Now we differentiate in regard to B, reverse the order of iutegrations;"
and make use of formula {2), See. 1; the resulting value of dP/dB W{ll
then be expressed as a double mtegral N\

ar . 2(1 - r2) — R‘Z) 2 f f —-(:n+u=)+ferm }t’&)” ”dtdu,

")

a
2

or \\~
_a- "2) A (1 — Rﬁ) > J l; im=4;«=)+m(tu}”—2dtdu,
dR -;r]_‘(ﬂ —_ 2);./“;\;\( d gu] ‘ary org.in
sinee

n— 2 n = 1 L
F(—g')r(...y ) sealn ~

In the double integral we\ﬁa.ke transformation to new variables £, 5
defined by PAS

AN/

O ! B
> E== n = fu.

The Jambian{%twu in regard to & », being 1467, we have

@ ta £+
f f '”a’*""’*“” R ayradidu, = %f f (3 'E')n”'Ldﬂg -

£-1ds dt .
=zl‘(n—1)f ;= T(n — 1)f =R
(e + & R,,)
and so, finally,
dr -2 n=1 ad o at )
e (RN (e P N~y

In case r = 0, that is, when the variables , y are uncorrelated, we bave
a Very simple expression of P:
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n—1 »

In case r # 0 the integral

[, e
Jo (chi — Rr)»— O\
can still be found in finite form. We have, in fﬁct, Ko
= df i x . O
J[; cht — RBr 1 — R2T2[§ + are sin (R?*:){liz

whence ’mj\"‘

= gt I y

. = o et e — > 1 v al .

ﬁ (e — Bt~ (n = &)1 an-?{[l R\%v [2 + arc sin (R?)]}=
and so P \%
R =8 dndB . ::'.. e

P o - o TRBMERAYE  orosin o) |

where
L}

-1

o
ne n—2

Qf: T—(ﬂ—?.] (1, _ rﬁ)ng
O - x(n — 3)!

When #» is an evefl:.\n'ilmber, this integral appears in a very simple finite
form, but in cg..s} of an odd » certain integrals of a rather complicated
type appeal™Besides, the behavior of P for somewhat large n cannot
be easily, ’g:ra,sped by using this integral expression for P.

5. Asher, who was first to discover the rigorous distribution of the
coge\,}a't’ion coefficient, called attention to the fact that, setting

the — Z_(x,- - S)(yg — -S‘;) ,
V Z(w — )2y — §)°

the distribution of 2 will be nearly normal even for comparatively gmall
values of n. Let us set thR = w, tht = r; then P can be expressed thus:

P=n—2f“’f°° chedidz
T _wJo (chichzchy — shishz)™ '

Instead of # it is convenient {o introduce a new variable « so thai

chtchachi — shishz = r~ch(z — ).
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Then
p=n—2 (@f)* dz AL — 7
3 J- ) B = or ), o,
where

= hE+5)  ehlo +9)
2chzchi T 2chwchi

for all values of 2 under consideration. Now

T ~ e Val(n — 1)
o VI—pr | Tm—3 ()
and _ .\:\ )

T =) /Al - 1

v Vi-p . Ta-D \H% ‘)

A - (el ‘ d
vy R

for 0 < p < 1 as can be easily verified. Con’seﬁuently

_(n— 2T — 1) (,"h"‘*)a bAgHET R in
¥

V2T(n — 3
ch(ru-H') ¢ i,
. \[14— Schadht In =1 ], 0<d<1.

As to the integral in th\;‘(brmula its approximate expression, omitting
terms of the higher order

_f"‘:ék (z—;pdz S tht - ”; i)
A . 2n — 3

.

sinee

Thus for somb}yhat large n the required value of P can be found with

the help of & ’s}nple approximate formula.
The yarious distributions dealt with in this ehapter are undoubtedly

of gredt value when applied to variables which have normal or nearly
norma dlstmbutmn Whether they are always used legitimately can
be doubted. At least the “onus probandi” that the “populations” with

which they deal are even approximately normal rests with the statisticians.

Problems for Splution
1, Bhow that

n 2

2 1+t\/: _m% n 1.
lim =" "R = — f e ¥ du
f=—> 5231‘(1;) Q ‘\/-’2; -

2

Hryr: Lispounoff's theorem and Prob. 1, page 332.
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2. With the same assumptions and notations as in Prob. 3, page 336, show that the
distribution functior of the quotient

T — 8

€

; i=1,2,...n
i5

n—4

1
() p N .
Fit) = 2 )f 1(1 — -——T—) dr il I£| =var>i

n—1

n— 23\ J- a
xin — 1)T —2 O\
Fit)y =1 if t>vn—1 Fit)y =0 if t<—‘\x..n—l

-

It is worthy of notice thai for n = 4 the distribution is uniform,.l,‘

3. In two serics of observations, samples €y, Tz, . . . Ta g;@y;, Yz, - . . Yar frOmM
the same normally distributed population (or of the same garmally distributed vari-
able) are obtained. Denoting for brevity O

(N
=$1+$s+"'+$n 8,_!}1{%"\324"""{'%*

oy ' ” O "
11
=y (;ﬂt@,@aaﬁjﬁg;;f&g% -4

find the distribution funection of th&qﬁbtient =7 (*Student”). Ans.
a' £
~

) 3

}é{i"—f-n’—l)
P =0 2 f‘ S S
RS (’Ln - ) S S

1+
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APPENDIX I

1, Euler’s Summation Formula, Let f(z) be a function with a
continuous derivative f'(z) in an interval {a, b} where o and b > a are

arbitrary real numbers. The notation O
nEh ( '\: A
2,1 O

L N\

will be used to designate the sum extended over all intege,rsiﬁ which are
>agand =b. Itis animportant problem to devise meang€or the approxi-
mate evaluation of the ahove sum when it contains a consiGerable number

of terms. NG
Let: [z], as usual, denote the largest 1nteger contﬁ.med in a real number

%, 80 that
= [z] + 4.\
where 6, so-called “fractional palli*’a'df'ér %’a\fl&‘ﬁﬁsl%he inequalities
05 0% 1.

Considered as functions of a eoﬁtmuous vanrable z, both [z] and @ have
discontinuities for mtegra.l \@lues of 2. The function
p(:e:) 1 _p=[x]—z+%

18 likewise dlscontmugus for integral values of z. Besides, it is a periodic
function of z W\h"‘the period 1; that is, we have

K oz + 1) = o(z)
for any. sreél 2. With this notation adopted we have the "slowing
imporfant formula:

n=h
W i) = [He)de + s ~ p@f(@) — [lo@f @o

L=

which is known as ““Euler’s summation formula.” . <
Proof. Let & be the least integer >a and [ the greatest integer <b.

The sum in the left member of (1) is, by definition,

H®) + ke +1) + - -+ IO
and we must show that this is equal to the right member.
we write first

To this end

347
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f=l=-1

[ro@wr@d: = [fored + [o@r@d+ 3, [T @@,
i=k

Next, since J is an integer,

J+1 71 ; }
Mo = [Tt Drea = SOELGED

3+1
+ | f(x)d:c
i:\
wnd o
T pir n=i—1 'S ’x ;
S swree - SO E0 . safr [ s
i=k n=hRI\,
On the other hand, 7\

. N P\ )
Joror@is = [k =104 ) - L - swsio +

www_dbraulﬁn’l;a;‘y.org.in + Jv F(z)de

”

wor@is = [ (1 - @iz = LD 4 oorw + [ s
J [~ =D

\

so that finally \\ )

f p@)f (2)de = —qtk) —JE+Y - -0+
0 + o)) — p(@)f(@) + [ H()ds;
whenee _ {\
\u<b
O3 = fla)i + ) — o) ~ [Co@)f @4,
na

which completes the proof of Euler’s formula.
Corollary 1. The integral

fp(z)dz = o)
represents a continuous and periodie funetion of  with the period 1. For

0@ +1) = o(@) = [ o) =jfo‘p(z)dz = J;I@ — 2)dz = 0.
Ko<z <l,
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- [ -t52

olz) = 8(1 2— 9)

and in general

where 8 is a fractional part of z. Hence, for every real z
0=l 235 O

Supposing that f”(z) exists and is continuous in (a, b) and integratingby
parts, we get AN -

N/

(@) @iz = oG ®) — o' @) — [[e@ AR,
which leads to another form of Euler’s formula: "‘\

n=h

A\
Sty = [(Fe)da + o®O) - p@f(0) <BF®) +

66
N\ ¥ r b T
www,dbl;afi}'ljﬁrafls(%(lgg.ﬁrga) + j; a{2)f" (x)dz.

Corollary 2. 1If f(x) is defined for all #.2 @ and possesses a continuous
derivative throughout the inferval (a, + ©); if, besides, the integral

ST @@

exists, then for a ;wé)-i%a;i)]e Yimit b we have
. éb"\x’\
) =

(2) Jin

¢ + [1®ydb + p®HO) + [,7oE @

~:1:1 o .

where! O is a constant with respect to b.
Nip/suffices to substitute for

[rowy @as
the difference
J; * o) (z)de — J;‘;,(z)f'(x)dx

and separate the terms depending upon b from those involving &.

2. Stirling’s Formula. Factorials increase ?vith ?th‘em(_*bll‘aplgrlﬁ};
ang their exact computation soon becomes pra,ctlca.lly.lmposm rz;dmate
question then naturally arises of finding & convenient appr
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expression for large factorials, which question is answered by a celchrated
formula usually known as “8tirling’s formula,” although, in the main,
it was established by de Moivre in connection with problems on proba-
bility. De Moivre did not establish the relation to the number

T = 3.14169 . . .

of the constant involved in his formula; it was done by Stirling.
In formula (2) it suffices to take ¢ = 14, f(x} = log z, and replace b
by an arbitrary integer n to arrive at the remarkable expression. O\

log (1-2-3 - --n)=0+(n+%)iogn—n+ff{"”fx
J i

where C is a constant. For the sake of brevity we shall sét

) &
w(n) = f P(x_m \/
n EY O
. A
Now A
pr(x)dfc "o(z)da "+2p(x)dx
r z Q\/,dbraiﬁ@l aryFFin T

and

ad

[[rtelte ot & (odn , (pedu _
E z ou-—i—k“-\ou-{-k su+k

J;%(% \\u}du n J‘ G —wdu _ %_ ﬁ* (1 — 2u)du

, er Cut ko T +wk+1—u

Hence O
> ;
p \\ wn) =1 j; (1 — 2u)%F, (w)du

where %
vV ~ 1

Fulw) = g(k Tk +1—w
Since

B+uwk+1—w =k +1) 4 u—
it follows that for 0 < u < 14
b+u)+1-u>kk+1)
Fru)E+1-—w) <G+5<®+ 5+ D).
Thus for ¢ < < 14
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1 1
Fal) < E;Rm ok

1 1
Fulu) > E(M-%)(k Sy 7

Making use of these limits, we find that

win} < —Lf%(l — 2u)idu = L
2n}o 12n O\
w(n) > u—lw—f}(l — 2u)idy = 1 *3 )
Zn 1+ 1o CEBEAD A
and consequently can set '\\“
) -
“) ~ Tt S
where K7,

0 <8< 00

7

Accordingly QO

www.db al{l,ﬂ;:.‘l"ary,org,in 1
log(1:2:3.-.--m) = C—I—(;ﬁ-f—é)logﬂ—ﬂ'i‘m'

The constant C dependf&{p a remarkable way on the number .
To show this we start from fhe well-known expression for = due to Wallia:

. {2 D44 on 2n )
—=lml=- 3.5 .5 .+« ——To— ! n—r o
2 1385 2n—1 2n +1

which follows frg)&éhe infinite product
~C

~ 2 2 t
S B2
by talitlg = = 7/2. Since

2\2'44 2n on [ 2-4:6---2n ]’ i
5 -

1'3°3's "2a—-1 2n¥1 |1-3:

we gef from Wallig’ formula
e[ 2-4-6.--20 ._1__.], n— @,
\/w—-—hm[l.gj.-‘(,‘?.n—-l)\/ﬁ

On the other hand,

. e ...211-_*2“.1.2.3...”
246 1.2-8 - 2n
1-3.5... (2n—-1)_=2n i3 .
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so that

o (2m(1.2.3 ... w) 1)
\/;—hm{ 1-2.3 ... 25 'Wf? n-— w

or, taking logarithms

log+v/7=lm[2rlog2+2log(1-2-3 - - - n) —
log(l 2—3--—2-:1)_%1&{11]

N\

But, neglecting infinitesimals,
A

log(1-2-3---w)=CH+m+3logn—n,\N"
log(1-2-83-..20) =C 4 204 % log2n 2 20
N\

whence 7\
w\V
lim2nlog2 +2log(1-2.3 ... n) — \;
~log(1-2-3 .- . Qn)’-\\f ognl =C —~ Llog2
Thus \x\ :
logvx = € — 4 log 2, OC = log +/2r
and finally W dbrauJﬁ;il:;‘a:;‘y org.in
3) log(1.2.3... log‘\/2ar-|—(n—|— )logn—-n-i-
N\
AN 1 1
\'\\} + m ; 0<e< 5
This is equivalent t-o,:ﬁWO inequalities '
</
O 1 i
:',\”' pl2nt6 o = 1-2-3 - o < 127
\M, vV 2rn nte ™ ¢
which shq%* that for indefinitely increasing n
NS
~O . 1-2.3...n
} im ——~ = 1.
N \/2wn are

This result is commonly known as Stirling’s formula.
For a finite n we have

1.2. 3. o= LrnnTe™ . gnln)
where
_ 1 l

The expression

v 2rnnte™



APPENDIX I : 353

is thus an approximate value of the factorial 1-2-3 - - - n jor large »
in the sense that the ratio of both is near to 1; that is, the relative error is
small, On the contrary, the absolute error will be arbitrarily large for
large n, but this is irrelevant when Stirling’s approximation is applied
to quotients of factorials.

In this connection it is useful to derive two further inequalities.

Let m < n; we have, then,

k=n—-1 £\
j— 1 -
Fnlu) = Falu) = E &+wk+1—u) Re.Y
k=m o\ b
and further, supposing 0 < u < %4, i 4":’;:
k=n—1 1 . ) .'\\
Fali) = Fu) < 2 5D ~m ~ md
E=m x'\\"
k=n—1 , '\"’

| NGNS T |

Fo(uw) — Fulu} > E F+rHG+y m+3i n+id
k=m RN
www,dbral}}%ﬁg"ai'y.org.in

Hence, R

~

1 1A 1 1
wlm) — o) < 5 = T @ 0 T I H T e+ D

At
and, if 71is a third arbitra§ positive integer,
7 1 11
w(m) + W(Q\T*”(n) < Tom + 19~ 12n
PR 1

Y 1 1
w(m) F0) — o) > ey p TREFD D
3.”\86‘1';'1{*: Definite Integrais. The value of the important definite

intofral
J, e
o

One of the simplest is the following: Let

ean be found in various ways.
Jo = [ e
[\
in general where n is an arbitrary integer 0. Integrating by parts one
can easily establish the recurrence relation

n—1

Ju = 9 Ju—-?;
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whence
Tom = 1-3-5 - -2;“ (2m — I)Jo
Tomar =1-2-32- Cem
On the other hand,
Tt &+ IS n + N,y = J; ® et 4 N)Y, A
which shows that & \:\
Joss + O + Ny > 0 \O

for all real . Hence, the roots of the polynomial in the’ left "member are
imaginary, and this implies ~\

J2 < Jﬂ+lJn—1 \’:

Taking #n = 2m and n = 2m + 1 and usmgs ’the preceding expression
for Jom and Jami1, we find o\

9.4.6 .- 2m wwxl'dblaullhl‘alyorggl 4.6 - . 2m
1-3—5---(2m—1)\/4m+2;.<J<1 3-5- (2m—1)\/—
But 4 b

| g&\ﬁ . 2

. ¢\ m
,,}‘ﬂl 35 (Zm—l).\f" =V
hence :U};’
AY

"\ Jo = { Tevdt = 347
O J;

Here g};\ﬁsfituting t = +/au, where a is a positive parameter, we get
~0)

\ \; J‘ne—uﬂdu = 1\{%.
a 2¥a

As a generalization of the last integral we may consider the following one:
V = fu “eov* cos budu.

The simplest way to find the value of this integral is to take the derivative

d w0
H_}; = —J; 2% gin bu - udu

and transform the right member by partial integration. The result is




or

whence

To determine the constant C, take b = 0; then

= (Fhoo = J; e*vdy =

f g~ cog budu = 1\[%6__
0 Na

The equivalent form of this integral is as follows \\

f_m —eu? gog budy = J._ e‘““gﬁ} \/‘

www.dbrauhht

so that finally

APPENDIX I

dV b
T~ T2
b
d(Vek) = 0,

b
V =(Ce %

.01 g.m

356



APPENDIX I1
METHOD OF MOMENTS AND ITS APPLICATIONS

1. Introductory Remarks. To prove the fundamental limit theorem
Tshebysheff devised an ingenious method, known as the “methbd of
moraents,” which later was completed and simplified by one of #he most
prominent among Tshebysheff’s disciples, the late Murkoff! The
simplicity and elegance inherent in this method of moments make it
advisable to present in this Appendix a brief exposition.éf 1.

The distribution of a mass spread over a given interval (e, b) may be
characterized by a never decreasing function wie), defined in {(a, B)
and varying from ¢(a) = 0 to @(b) = m,, whepe\\qm; is the totul mass con-
tained in (@, b). Since ¢{x) is never decrea{s.ig’g', for any particular point
2o, both the limits _ PN

Iim elmy,— €}, =% ":t:g_—-, 0)
L oo O Ii%’;?g‘ﬁ zo D)

exist when a positive number e ténds to 0. Evidently

o(we — INE e(20) = ¢lzo + 0).
If ¢(\J

(,?('xg\—u{]) = ¢{ze + 0) = ol),

then zo is & “pointgh continuity” of ¢(z). In case

SO e+ 0) > ez — 0),
IS 2 poip’%f discontinnity of ¢(z), and the positive difference
NN olzo + 0) — ows — 0)

may e considered as a mass concentrated at the point 5. In all cases
o(zo — 0) is the total mass on the segment (@, o) exeluding the end point
%o, whereas ¢(xo + 0) is the muss spread over the same segment including
the point ze. .

The points of discontinuity, if there are any, form an enumerable set,
whenee it follows that in any part of the interval (@, b) there are points of
continuity.

If for any sufficiently small positive ¢

P(za + €) > om0 — ),

2o i called a “polnt of increase” of p(x). There is at least one point of
increase and there might be infinitely many. For instance, if
356
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p(z) =0 for
¢(x) = my for

& n
A A

T
T

HA A

¢
b,
then ¢ is the only point of increase. On the other hand, for

r—a
b—a

() = my

every point of the interval (a, b) is a point of increase. In case of a
finite number of points of increase the whole mass is concentrated in
these points and the distribution function e(x) is a step funetion with&
finite number of steps. O\
Stieltjes’ integrals AN

N

~
2

fa bd(p(x) = i, J; bxdqa(x) =y, - - - J; bn:idga(?)?ﬁ n‘z‘-

N

represent respoetively the whole mass mo and its thoments about the
origin of the order 1, 2, . . . <. When the distribution function e(x)
is given, moments mo, my, ms, . . . 1 (provid d;}hey exist} are deter-
mined. H, however, these moments are giverhand are known to originate
in a certain distribution of a mass over (, bh.bthe question may be raised
with what error the mass SpYegdlera R ifivesvalifa, x) can be determined
by these data? In other words, given¥m, mi, ms, . . . m;, what are the
precise upper and lower bounds of alass spread over an interval (a, x)?
Such iz the question raised by Tslisbysheff in a short but important article
“Sur les valeurs limites des'iﬂf}grales” (1874).1 The results contained
in this article, including yeryrémarkable inequalities which indeed are of
fundamental importancg\are given without proof. The first proof of
these resulis and thesebtaplete solution of the question raised by Tsheby-
sheff was given by 8arkoff in his eminent thesis “On some applications

of algebraie c%“ﬁiﬁued fractions” (St. Petersburg, 1884), written in

Russian and therefore comparatively little known.

Suppose'that pr is the limit of the error with which we can evaluate the
mauss b@lbﬁg‘ing to the interval (e, x} or, which is almost the same, the
V&]ue\af“(p(x), when moments ma, M, Me, . . . M; axe given, If, with ¢
tending to infinity, p; tends to O for any given x, then the distribution
function (x) will be completely determined by giving all the moments

My, My, Mz, -+ .+ -

One ecase of this kind, that in which

1.3.5...(2}‘;—_1)}

my = 1, M = 3 Moy = 0

Y Jour, Liowrille, Ber. 2, T, XIX, 1874
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wag considered by Tshebysheff in a later paper, “Sur deux théorémes
relatifs aux probabilités” (1887)! devoted to the application of his
method to the proof of the limit theorem under certain rather general
conditions. The success of this proof is due to the fact that moments,
as given above, uniquely determine the normal distribution

elr) = \_}_;J'z e—idu

of the mass 1 over the infinite interval (— ®, ). O
After these preliminary remarks and before proceeding to am*erderly
exposition of the method of moments, it is advisable to devotemfew pages
to continued fractions associated with power series, for contihued frac-
tions are the natural tools in questions of the kind we sh.élf‘eonsider.
9. Continued Fractions Associated with Power Sefies. Lot

A A A )
@) =mtmtmt i:.’\\.(Al;ﬁo)
be a power series arranged according to d:escjl;éasing powers of 2 where the
smallest exponent ai is positive. We eonsider this power geries from a
purely formal point of viewnibrelgtifensy organs to form a sequence of
rational fractions ON°

~ 3

A1 A1 sf‘fz Al A2 As
e e mtm T

H m—
f=ial) zﬂtl
¢

N\ .
and we need not be co.n&rned about its convergence.
Evidently 1/¢(z)yean again be expanded into power series, arranged
aecording to decré@sing powers of 2. Let its integral part, containing

non-negative powers of z, be denoted by ¢.(z), and let the fractional part
O Bi  B:, B;
= 5 + e + pr A 4

.\' 3

coiﬁs;‘tﬁing negative powers of z, be denoted by — ¢1(2), so that

¢_:£j = qi(2) — $:1(2).

In the same way -
-1

$1(2) _

can be represented thus:

ﬁ = g:(2) — ¢2(2)

1 Qeuvres complates de P. L. Tshebysheff, Tome 2, p. 482,
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where ¢:(2) is & polynomial and

¢-2(z)——+ + °+ -

gr U oays
a power series containing only negative powers of . Further, we shall
have
= 0le) — o)
¢2(z) e 3

with a eertain polyromial qs(z) and a power series o

£
N/
L \

zh 7%
y 3

¢s3(z) = —i'

381 zﬁ:

containing negative powers of ¢, and so on. Thus we ‘g@il.éd to consider a
continued fraction (finite or infinite) \V

(1}

WO dbraullbrary org
associated with ¢(2) in the sense thé&t»the formz;] expansion of

1 1.0 .

'__’_“- n\

QI. @‘*M " 1

.\\ ST E - )

into a power serieg W}H repmduce exactly ¢{¢). The continued fraction
(1) is again con.s:dered from a purely formal standpoint as a mere abbre-
viation of tk\ SEQuence of its convergents

&'S.\I- &-—-_]_'_ 1' &:—]-.—‘ 1 R )
¢ r @ Qs @1 — =’ @ a--—_1
"‘\3‘3 ! q2 g2 g3
The polynomials
Pl,PBJPSJ‘
QI’Q21Q3"

can be found step by step by the recurrence relations

P; = qPss Pa-—s} 2, 3, 4,
2 L
( ) Q| = q.Qa-] - ‘-—2

Py =1 Py=10

=, Q=1
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from which the following identical relation follows:
(3} Pi2)Qi—r(2) — Qi2)Pia(z) = 1,
showing that all iractions
Pi(z)
Qi(2)
are irreducible. Evidently degrees of consccutive denominators of

convergents form an increasing sequence and the degree of @;(z) d3%at
least 2.  Bince

.\:\'
1 1 _ Pilgia — ¢ini(2)) — PLYY
== _ Qilgir — din(2)) ‘""Qi;—l
g2 T 1 ON
T i1 — $in(2) o

W P — Piia(?)
N Qi — Qidira(2)

we can write \
o) = Piyy — Piixi(2)
. W ,dgﬁﬁﬁ [ E:g’ﬁ?‘é‘il ézg‘l
in the sense that the formal develdpment of the right-hand member is
identical with ¢(z). By virtuc ofrelation (3)

R\ 1
—»i‘—.}i = .
¢(z)\\ 0 Q@i — Qidirr)
The degree of Q: bejng\; and that of Qiyy being Ay, the expansion of

N

:'\:~7 Qi(Qirr ~ Qidbepy)

in a series ;g.&escending powers of z begins with the power M+,
Hence, '

NN P, M
m\J ¢(z) - Q; = Fefin + P

\‘:

and, since M1 = X + 1, the expansion of

P,

z — —

#e) - 5

begins with a term of the order 2\ 4~ 1 in 1/z at least. 'This property

characterizes the convergents P;/Q; completely. For let P/Q be &

rational fraction whose denominator is of the nth degree and such that
in the expansion of

&{z) — g
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the lowest term is of the order 2n -+ 1in 1/zatleast. Then P/ coincides
with one of the convergents to the continued fraction (1). Let 5 be
determined by the eondition

MEnrL ?\H-i-
Then
P; M
¢(2) - _Q}}' = z);——)irﬂ o 2\
¢(Z)‘Q=W_§+"' t:\’:\'
'S\
whence in the expansion of A7
<™
P_P,
a7 )
the lowest term will be of degree 2n -+ 1 or M +&£+1 in 1/z. Henee, the
degree of \x & :

PG — PRy
in 2 i5 not greater than Mﬂﬁ%ﬁé‘fﬂ!@h&’ay‘org_in
MNo—n—1Vand  n— A

which are both negative while:
L 3

# \”,
XN PQi— PG
iz a polynomial. ]Eze:pc‘e, identically,
o PQ—PQ =0
"\Qt
or ,\iw’
QO
A\ P - P,
O Q7 Q

\w\ "/
which proves the statement.
b
, d
3. Continued Fraction Associated with f zL;(x-x)-- Let #(z) be a never

decreasing function characterizing the distribution of a mass over an
interval (g, ). The motents of this distribution up to the moment of

the order 2n are represented by integrals

mo = [Pdol), mi = [ zdel@),
My = Jj zqelx), + -+ Mon = ﬂbm?"dgo(a:).
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Let
Mgttty - - - Win
e ottiifity Myt .
1f. . . _ V2 T g1
Ay = mo; Ar = s Ag = mymamgl; © 0 As = .
L1 Pe
Mot g7y
mﬂmﬂ+l P mEn

If ¢(z) has not less than n + 1 points of increase, we must have

Bo>0, A >0, -« A >0, O

", ] O\
and conversely, if these inequalities arc satished, ¢(z) has af l@afét w41
points of increase. To prove this, consider the quadratic foMm

o= [Po+bat - +ba)dpled

in n - 1 variables &, £y, . . . t». Evidently Y,

¢ =Zmadd; (= UJ}Z c..m) .
so that A, is the deferminant of ¢ a’nd. Ao, Ay, . . . A,y its principal
minors. The form ¢ cappotabARigBedRlga o =0 = - - - = t. = 0. .

Forif z = £is a point of increase@and ¢ = 0, we must have also
Ete N
S+ 0elQr - - b e(@) =0
{”“

for an arbitrary positivb\%"é{;hence by the mean value theorem

»

o\
or :"\“.

NS

b+t +x @+t T do(e) =0 (g —e<n<E+0)
R\ bttt - A" =
boga@ |
v ae(a) > 0.
Letting ¢ converge to 0, we conclude
o+t E+ - - H =0

at any point of increase. Since there are at least # -+ 1 points of increase
the equation

bhttz+ - -+l =
would have at least n + 1 roots and that necessitates

tﬂ:tl:"' =tﬂ=0_
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Hence, the quadratic form ¢, which is never negative, can vanish
only if all its variables vanish; that is, ¢ is a definite positive form. Its
determinant A, and all its principal minors A1, Ass, . . . A must be
positive, which proves the first statement..

Suppose the conditions

Ay >0, A >0,,..48,>0

satisfied and let ¢(x) have s < n - 1 points of increase. Then the\
integral representing ¢ reduces to a finite sum

o =pilly+ bt + - o - FLED el lita - - - A;_gngg)'z{’l_\“.\
+ T +pa(t0+t]£s+ R \+t» ;‘)2

denoting by pi, ps, . . . ps masses concentrated in thqfs fio'mts of
increase &, &, . . . & Now, since s £ n constants fents, . . . n, DOt
all zero, can be determined by the system of equatiors."
ot tifa bl = O
ot bk + - LS9
by + bk A - - - jlf’?&‘;'? = 0.
Thus ¢ vanishes when n&wﬁldgggﬁa%mr%ﬂi‘&l? henee, its determinant
A, = 0, contrary to hypothesis, “\"
From now or we shail assuLlie that «(z) has at least n + 1 points of
increase. The integral |, () _
O f”d«»(x)
o e — %
AS
can be expanded in{c»a formal power series of 1/2, thus

b @ : Man
L~M=%ﬂ+%+}m§+'”+§m+'”

5 —

and thig :ﬁb\nrar geries can be converted into a continued fraction as
explathed in See. 2. Let

be the first # 4+ 1 convergents to that contibued fraction. Isay that the

degrees of their denominators are, respectively, 1, 2, 3, ... n + 1.

Bince these degrees form an increasing sequence, it suffices to show that

there exists a convergent with the denominator of a given degree
s<n-+1.

This convergent P/§ is completely determined by the eondition that in a

formal expansion of the difference
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bd@sﬂ:
a2 — =

into a power series of 1/7, terms involving 1 J2, 1728 ... 1/2% are
absent. This is the same as to say that in the expansion of

B
mqﬁ?@%—P@

there are no terms involving 1/2, 1/22, . . . 1/2°. The preceding exvp}es-
sion ean be written thus: O\
A\
b b \J
Q@ide( | (PQE — Q&) s - AL
[[awie . ("6~ iy — P = S
Since \

-3
J; Q (Z} Q (I)d¢ (Z) P(z)

is a polynomial in 2, it must vanish 1dentlcaliy That gives
WWW . dbrau}] rary.org.in

) P() = f z) = 88 4p)

To determine §{z) we mustmes(press the conditions that in the expansion of

\\ 'Q(x)do(z)

o =X

* N\ \ .x - TR ] .
termsin 1/z 1 /z{, . . 1/# vanish. These condifions are equivalent to
s relations ~\ &

{5) f Q{x)dgo(:c) =0, fbﬂiQ(x)dcp(:c} =0, ... fb:c“—lQ(:c)dqa(x) =0,

‘h in turn amount to the single requirement that

®) [o)@det@) = 0

for an arbitrary polynomial 8(z) of degree = s — 1.

Conversely, if there exists a polynomial Q(z) of degree s satisfying con-
ditions (5), and P(2) is determined by equation (4), then P(z)/Q(2) i &
convergent whose denominator is of degree s.  For then the expansion of

f *de(z)  P(2)
e — X Q(z)
lacks the terms in 1/2, 1/22, . . . 1/z%,
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Let
Q@) =b+le -+l 4+« +l 2 42
Then equations (5) beeome

mols + mds Fmals + - - - Fmpaley 4 m, =0
mlzﬂ +m2Z]’. +mszﬂ + noeos +mal,_1 +m,+1 =0

Msily + My + Megads + + -+ + Mascolers Moy = 0.
This system of linear equations determines completely the coﬂ'ﬁ@ents
I, 1, . . . l,_, since its determinant A, ; > 0. N
The exmtence of a convergent with the denominator of degree
ssnt1l m'\';.‘

being established, it follows that the denominator™of the sth convergent
P./0Q, is exactly of degree s. The denormnatqr@“ is determined, except
for a constant factor, and ean be presented, m\t‘he form:

1z 2* ,:w'- -2
VY Ry o5 gt

Q’=_A_c__ mlmz?ﬁra SR /P

a—1 N\

ms_lm.,m.+1 R (17 Y
A remarkable result\{bllows from equamon {8) by taking @ = . and
8 = Q. ; namely, Ke
) i) e -0 sy
o XY &

while §
~\’73" j; Qo) >0 (s = m).
In}m general relation
Q. = 0Qs-1 — Quz
the polynomial ¢, must be of the first degree
¢ = a + By

which shoﬁs that the continued fraction associated with
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has the form

e S
b ! mz+ﬁ2_a—-_az+ﬁa _

The next question is, how to determine the constants o, and 8,. Multi-
plying both members of the equation A

= (a2 + 81— Qe (s22) OV

by Q,_.de(z)}, integrating between limits ¢ and b, and takmg in$o account
{7), we get <~~.‘.
0 = a f 20, 1Qusde(2) — [ Q2 2dwo*
On the other hand, the highest terms in Q._;\and .z are

aog ¢+ 013 1 gy "\ Cp_s2 R,

Hence, \J
) www.dbr alil,tbrm y.org.in

2Q o i.@s_lth 4+
where ¢ ig a polynomial of dggree <5 — 2. Referring to equation (6},
we have P\

PE

b \\
J;ﬁ@?—EQ!—ﬂld(p(z) =
and consequentb(;} J
N\
(8) D f et
o “\f:" gl f Qf_1d¢(z)

Su%ose that the following moments are given: me, my, . . . Maa; NOW
many of the coefficients o, can be found? Evidently a; = 1/mo Fur-
thermore, @y = 1 and @, is completely determined given mp and i
Relation (8) determines o, and Qs will be completely determined given
Mo, My, Ma, Ms. The same relation again determines e, and Qs will be
determined given #, My, . . . My Proceeding in the same way, we
conclude that, given mo, m1, ms, . . . Ma,, all the polynomials

QUJ Ql: Qz, LR Qn

as well ag constants

o1, Olgy X3, . + « pfl
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can he determined. It 18 important to note that ail these constants are
positive.

Proceeding in a similar manner, the following expression can be found

[z (@)

Bs = —af————
flerdete)
It follows that econstants )
By By . - . Ba . 5
are determined by our data, but not 8,41, Forifs =n +1, the\iﬁﬁe\gral

~

[l

'€
can be expressed as 8 linear funetion of mo, ms, . ;”’rﬁgﬂ.l with known
coefficients. Bub Msay1 15 Dot included among obr data; hence, faia
cannot be determined. AN .
4. Properties of Polynomials Q,. Theorend: " Roots of the equalio
G2 =0 (5n)
www.dbl'aulihrﬁi'y_org_in
are real, simple, and contained within the “interval {a, b).
Proof. Let Q.(z) change its sigh v < s times when z passes through

points z1, 23, . . . % containedrstrictly within (¢, b). Setting
o) ={z\~—\z) G- o)
the product A\
0(2)Qu(?)
does not cha.ng({'i\fs“ sign when z increases from g to b. However,
;;.j\\ [ro@u @@ =0,

ancgah;is\'necessitates that
8(2)Q:(2)

or @,(z) vanishes in all points of increase of ¢(z). But this is impossible,
since by hypothesis there are at least » 1 1 points of increase, whereas
the degree s of @, does not exceed n. Consequently, Q.(z) changes its
sign in the interval (a, b) exactly s times and has all its roots real, simple,

and located within («, b).
Tt follows from this theorem that the convergent

P,
@a
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can be resolved into a sum of simple fractions as follows:

P.z) _ A A, A,
©) 0.(2) z—12 pamre S tiT
where 21, 22, . . . % are roots of the equation @,(2) = 0 and in general
Pn(zk)
Ap = RS-
Qe

The right member of (9) can be expanded into power series of 1 / # the

coefficient of 1/2* being M\

¢
N
/s

Novs
2 At N

By the property of convergents we must have the foﬁomng equations:

Y,
2 Aa = m £ ;.
WW\EH’M&M org.in
a=1 .',"
n N
4 azﬁ“‘l = Mou—1.
\\&51
These equations can bo condensed into one,
</
£ ) i
N b

(10) D7 AT = [T

\§“' a=1

which sﬁm}ld hold for any polynomial T'(z) of degree =2n — 1.
'&et,us take for T'(z) a polynomial of degree 2n — 2:

o] @ T
"'(z)‘[(zfzam;(za)]'
Then

T() =1, T =0 if B#a

and consequently, by virtue of equation (10),

Ae = L"[@:%:)TW >0

Thus constants 4y, 4s, . . . A, are all positive, which shows that Pa(s)
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Las the same sign as @,(z;). Now in the sequence

Q(21), Qulz), - . . Qufza)

any two consecutive ferms are of opposife signs. The same being true of
the sequence

P.(z)), Puleg), . . . Pulza),
it follows that the roots of P.{2} are all simple, real, and located in the
intervals A
(21, 22); (20, 28); . . . (201, 2a). ’\:\,
Finally, we shall prove the following theorem: ' O
Theorem. For any real x ¢ ..}‘:

T (2)Qn1(2) — Qha(@)Qulz) \

is a positive number. \
Proof. From the relations N

0.6) = (@ + BIQAERER()
Qu(x) = (@ + Bo)Qr(t)" Qusl®)

W, dbraulihg'é:ry .org.in

it follows that \

O

Q01 = Q) _ oS00 +

Y e ’\ Qa——l(z)Qa—i(x) — Qu1{2)Qu—2(2)
& =F
whence, taking s =~]\',":2;"3, . . . nand adding results,
:t\‘": L3
Q“ ZJQ’;;l(x) - Qﬂ(x)Qn_l(z) = Eaa@a—l(x)Qa—l(z)'
,'J\: z—x =

It Swfﬁé"g\,; how to take z =  to arrive at the identity
) 3

Q) @ns(z) — Y@@ = 2 Q@)

s=1

Since o = 1 and &, > 0, it i3 evident that
Q! (#)Qu-1(2) — Gna(@D@(x) > 0

for every real z.
5. Equivalent Point Distributions. If the whole mass can be con-

centrated in & finite pumber of points so as to pr'oduce the.samta- l first
moments as a given distribution, we have an “equivalent point distribu-
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tion” in respect to the [ first moments. In what follows we shall suppose
that the whole mass is spread over an infinite interval — =, « and that
the given moments, originating in a distribution with at least » 41
points of inerease, are

My, M, Mo, . . . Man.

The question is: Is it possible to find an equivalent point distribution
where the whole mass is concentrated in n + 1 points? Let the unknown

points be Q!
£, &2 .+« Enna O\
and the masses concenirated in them . S
Ay As, o o A,

Evidently the question will be answered in the aﬂ"lrm;twe if the system
of 2n 4+ 1 equations \
R+l g

2 4o = mC
wwuf]a Lgblal}%olgm

=] ‘.’

(A) a4 1™

can be satifg’@d\‘l')y real numbers &, £, . . . &np1; A1, s, o o Ay
the last # -t-\l numbers being positive. The number of unknowns being
greater By one unit than the number of equations, we can introduce the
addifiahal requirement that one of the numbers &, £, . . . £at ghould
be eqfal to a given real number ». The system (4) may be replaced by
the single requirement that the equation

nt1

ay 3 4T = 7 T@del)

a=]

shall hold for any polynomial T(z) of degree =2r. Lot @z} be the

polynemial of degree n -+ 1 having roots &, £, . . . fas1 and let 8(2) he
an arbitrary polynomial of degree <2 — 1. Then we can apply equatiol
(11) to

T(x) = 8{2)Q(2).
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Since (%) = 0, we shall have
(12) [ 6@0@de) =0

for an arbitrary polynomial #(z) of degree <n — 1. Presently we shall
see that requirement {12) together with @(v} = 0 determines Q(z) saye
for a constant factor if : ’

Qn(‘u) = 0.
Dividing Q(z) by Q.(z), we have identically
Q) = Oz + W) + Rena(a) &)

N
where R..(z) is a polynomial of degree <n — 1. If 6(z) i afi arb;.
trary polynomial of degree £n — 2, N\

(Az + wolz) \ ’
will be of degree '=n — 1. Henee N\
[0z + wo@Q.a)dsla) = 0
by (6), and (12) shows thﬂ»@wwdbraul@]ﬁ%ryorgin
f "6(x) Ryzil#) o) = 0
for an arbitrary polynonﬁ?l@(i?) of degree =n — 2. The last require-

ment shows that Re.—1{z c@ﬁe‘rs from Q1 (z) by a constant factor. Sinee
the highest coefficientyin (z) is arbitrary, we can set

A2 Buale) = Qi@
In the equatipr{";,\m
A Q) = 0 + w)(e) — Gila)
it remair;s:{o determine constants X and g. Multiplying both members by
Q»{(‘aﬁ)ﬂga(x) and integrating between — @ and «, we get
)\f_mwa,,.LQndqo(z) = f_:Qﬁ_ld@(i)

or

2 qutete) = [ Qrdetd)

Xn,J =«

But

f_ﬂm Q:—ld@’(z) _ [N |

o @ e ——_——

I
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whence
R = Onit1-
The equation

0 = Q@) = (anrw + w)Q:() — Qus(p)

serves {o determine p if Q.() # 0. The final expression of Q{x} will he

0@ = (e -0 + &2 N0 ~ 0.

N

Owing to recurrence relations Ko N

= (s + B2} — Qo; Qs = (a2 + .Sa)Qz —Ch; - \ \
(a'nx + an)Qn— Qn._z,
it iz evident that
Q,Qan—l; LRI QI)QG = I\ "

in a Sturm series. For z = — =, it contains #\ 1 variations and for
x = = only permanences. It follows that the‘equation

Q) = 00"
has exsctly n + 1 distinct'¥ (‘-?’ail%%bﬁf’ﬁb’ Bf&dAg them ». Thus, if the
problem is solvable, the number,s' 51, Es, . . . &np1 are determined as
roots of
\ Q(:r,) = 0.

Furthermaore, ali unknoésc@s 4. will be positive. In fact, from equation
(11) it follows that

® Q(z) ?
‘A“‘ . m[(x —'E)Q"(za)] de(z) > 0.

Now we mugh show that constants A. can actually be determined so as
to satig{zf’é&luations (A). To this end let

PwJfl@%égﬂwa=@ww—w+%ﬁﬂ&@~ﬂdﬂ

Then
Q(x)f__ wg_ﬁ’i_(f% - Pa) = Q(z)dQQ(z)_

o T —%
and, on account of (12), the expansion of the right member into power
series of 1/x lacks the termsin 1/, 1/22, . . . 1/z*. Hence, the expal-
ston of

© de(z)  Plx)
—_wl — 2 Q{2
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lacks the terms in 1/x, 1/22, . . . 1/a?*1; that is,

P(.’B) _m o

w1
TQ—(?)_}_—!—?—F—FW—F

On the other hand, resolving in simple fractions,

Plx) A A,
U " z-nTz-nl

Expanding the right member into power series of 1/z and comparing
with the preceding expansion, we obtain the system (4). By the previous
remark all constants A, are positive. Thus, there exists a point, ({is\fr}bu-
tion in which mssses concentrated in » 4 1 points produce ‘moments

An+1 .
T — b

C+

o, M1, . . . M.  One of these points » may be taken a;:]iiffhrily, with
the condition €

Qul(®) = 0
being observed, however. N

6. Tshebysheff’s Inequalities. In a notc,réféi'red to in the introduc-
tion Tshebysheff made known certain inequalities of the utmost impor-
tance for the theory we are ¢ eI ;I‘:Wiltglr j?he first very ingenious
proof of them was given “ijy Markoft 11884 and, by a2 remarkable
coineidence, the same proof was fediscovered almost at the same time
by Sticltjes. A fow years lateryStieltjes found another totally different
proof; and it is this second prdof that we shall follow.

Let ¢(x) be a distribn ion“Tunction of a mass spread over the interval
— o, ., BSupposing that a moment of the order i,

o\‘ \ f_wm.xid‘p(x) = M,
exists, we sh,%iwghow first that
N lim Ti{mg — @) =0
~O lim Fe(—0) =0

when Z;tends to 4-=. For
f *widp(r) Z f “do(z) = lle(+=) — o)
¢ {
or

imo — o) = [} “a'de(a).

Similarly
’ f_‘ix‘dsa(o:)_’ =zl f__:d¢(z) = lip(—1)
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or
Fo(—D s |[ 7 zideta)].
Now both integrals
ﬁmx‘dep(x) and f:i:r,"dr,o(:v)

converge to 0 as [ tends to -« ; whence both statements follow imniedi-
ately. Integrating by parts, we have . o
¢\
J:;‘dqa(z) = Vo) ~ md — 4 J; To(@) — molri=1gd)
f ® pido(z) = (=1)Wep(~1) ~ 4 f ® rilo(f)dr,’
-1 —-f m\\. .
whenes, letting { converge te -, ’
A
mi = [ idela) = —if,"le@) — mipiilz — if 2o,

If the same mass me, with the same mﬁ;ﬁ’é’nt my, is spread according to
the law characterized by the't %ﬁ&ﬁ%’i{%i’}é’ B8 4Rall have

my = f_ww:t:"d‘g&(m) = - foj[:,@(xj — el idx — %ff mﬂ:i_ltf/(:t‘:)dx,
x..‘t\

whenece \\
(13) \f_” L2 N p(z) ~ y(x)ldz = 0.

Suppose the mg\r@éﬁtg
A'\\W' Mo, My, M2, . . . Moy

of the :{ﬁjsi;ﬁbution characterized by o(z) are known. Provided oz}
has(atyleast n 4 1 points of increase, there exists an equivalent point
distribution, defined in See. 5 and characterized by the step funetion
¥{(z) which can be defined as follows:

Yiz) =0 for — < x < B
Ple) = 4, for 2o <éE
lp(ﬂ?) = A1 1 Ag for Ei é x < Es
) = A+ As b - A, for  E Sz < b
¢($)=A1+A2+"' +An+1 for En+1§$< +w:

provided roots &, £, . . . £ of the equation ¢(z) = 0 are arrall_gEd
in an increasing order of magnitude.

T Y P -
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Equation (13) will hold for ¢ = 1,2 8, ... 2n or, which is the
ganw, the equation

SOON S 6@e@ - vz ~ o

will bold for an arbitrary polynomial 0(x) of degree <21 — 1. The
function

W) = olo) — ¥lo) 8

in general has ordinary discontinuities, We can prove now that(hly), if
not identically cqual to 0 at all points of continuity, changes(its'sign at
least 2n times.!  Suppose, on the contrary, that it changes'sign » < 2n
times; namely, at the points ' O

L 8
o\
a1, By, . . . Gy 9

Taking AN
8s) = (@ — 0o — @) G — a),
cquation (14) will be satisfied, while the ifégrand
www.dét.a?p@xsfry,org_m
if not 0, will be of the same signy :1;61: example, positive. Let £ be any
point of continuity of h(z). HE=a (@ =1,2, ... r) then la;) =0

smee h{z) changes sign at g¢ ) Tf £ does not coincide with any one of the

nuimbers Gy, @, . . - G %hen for an arbitrarily small positive e we must

have R &
A £te
m\) dz = 0.
."\';.\ j;_é O(x)h({z)dz
But by coqﬁin\\tiit:v
) B(z)h(z)

4 o\’ $
remé{p\é in the interval (¢ — ¢ & 4 ¢ for sufficiently small e above. a
certain positive number unless A(g) = 0. Thus, if 2(z) does not vaplsh
at all points of continuity (in which case ¢(2) and ¢(z) do not differ
essentially), it must change sign at least 2n fimes. Let us see now where
the change of sign can oceur. In the intervals

— o, £ and Eppy, T
1A function f(@) is said to change sign onte in (=, ) 1.t' in this interval tl";e}'e
exisia a point or poinis ¢ suck that, for instance, f{z) 2.0 in {a, ¢) snd f(z) £ 0in
(c, b}, equality sizns not holding throughout the respective m't.erva}a. The change
of, sig’n oceurs # times if (g, 5) can be divided in n intervals in which f(z) changes

gign once,
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() — ¢(x) evidently cannot change sign. Within each of the intervals

fi, &

there can be at most one change of sign, since ¢(z} remaing constant
there, and (z) can only increase. The sign may change also at the
points of disecontinuity of ¢(z); that is, at the points &, &, . . . £
Altogether, ¢(x) — ¢(x) cannot change sign more than Z: -+ 1 times
and not less than 2» times. O
Since y(z) = 0 so far as = < & and (& — ¢ is not nz}giafiive for
positive ¢, we must have _ AN

Ny

el —9 —Ya -9 20 o~
Also ¢(2) = mpfor 2 > £ and elx) £ my, so that‘“"\i’

elErcs +9 = $lean + 9 '

At first let us suppose \\ !
ol = = ¥(E — >0, olEfHF O — Yl + o) <0,
In this case ¢{z) — Y¥(r) must change.'sig"n an odd number of times; that is,
not lesz than 2n + 1 time‘é’.w“SﬁPQ'é%}%‘%@ﬁ?f&'ﬂappen meore than 2n + 1
times, the number of times go(:'t)‘»é’up(x) changes its sigh must be exactly
2n + 1. These changes OCG{T once within each interval
" O
A\ £y, B
and in each of the pomts &1, &, . . . £,01. When the change of sign
oceurs in the interwal{ £, £) where ¢(z) remains constant, because elz}
never decreases{we must have for sufficiently small ¢
pild

1) A olt — & — Wl — & > 0.
But thegéi’é;n changes in passing the point &;; therefore,
a6 olti+ ) — Yk + o < 0.

The equalities

elfs — € — ’J’(El — € = g, ¢(En+1 + 5) - 1}/(5%1 + 5) =0

cannot both hold for all sufficiently small e. For then there would not
be a change of sign at £ and £, €0 that the number of changes would
not be greater than 2n — 1 which is impossible, Therefore, let

e(fr—¢) —P(Er— e =10 and o(Enpr + € — YlEnga + 0 <0

Then there will be exactly 2 changes of sign: one in cach of the intervals

fin, &
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a’md in each of the points &, &, . . . £..1.  The inequalities (15) and
(16) would hold for ¢ = 2, but
ellr—¢) — gl — e =0, olh+e — ¢4+ <0
for all sufficiently small e,
Now let
e(fnri + € — Pllurs +6) =0 and el ~ & ~ (b — ¢ > (k

for all sufficiently small positive e.  Then there will be exactly 2n changes
of gign: In each of the points £, &, . . . £, and in cach of the @.{hfea}vals

: W

£y & N
The incgualities (15) and (16) will again held for < é"g:\but
ol — & —YlEpn — g > 0 and o{Ens1 i’;) = ¥{bas1 +€) =0
for all sufficiently small . Letting e con\rergeo\t@f], we shall have

ot — 0) 2 (520
ol# + 0) < @& F 0)

www.dbraulibtagy.org.in

fori =1,2,3, ... n+1in all casg® Then, since
olE) Z ol — 0 ol&) S olE + 0),
N\
we shall have also o)

e 2 v - )
\," e(&) = ¥(& +0)

or, taking into Qqsisiﬁeration the definition of the function {z)
\V .

%w =1 )

X P&

W\ ; ZAsH

"\’:';; @(E:) = EQ!(EI)

M\Z“; Elzl

v 8= D
= LU E)

These are the inequalities to which Tshebyshefi’s name is justly
attached. For a particular root & = v they can be written thus:

P(tr)

w02 g

o Pt
o0 2 27

b =r
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with the evident meaning of the extent of surmations. Ancther, less
explicit, form of the same inequalities is

o) Z ¢ — 0)
o(v) = ¥(v + 0).

As 1o P(z) and Q(x), they can be taken in the form:

P(:G) = [aﬂ+1(x - T")Qﬂ(ﬁ) + QMI(”)]Pﬂ(x) Qn(i’)Pn z)
Q(x) = [aﬂ+l(ﬁ7 — ”)Q (t?) + Qn-—d(”)]Q (x) Qﬂ(t’an—vl(x}

Thus far we have assumed that v was different from any u)?‘;»t of the
equaftion . O

Q”(ﬂ:) = 0, '.::. ":‘Z
but all the results hold, even if Ao
Qn(v) = (, \’:

To prove this, we note first thai when a Vanﬁ‘ble » approaches a root £ of
@.(x), one root of ¢(zx) {(either £ or £..1) ten‘ds to — « or <o, while the
remaining n roots approach the n roots! w1, &2, . . . & Of the cuuanon

wwwé (a)uhbldry org.in

(18)

N\

I ¢; tends to negative infinity; it 1s easy to see that

oY P
<& g
tends to 0. In thiga.\’c;}sé the other guotients
2 P(t:)
O Q¢
A !
tend respeetively to
&u\\:':'\;.’ P (331) P“(Jig) .
\ / (591) Q. (23-.-)
If £,41 tends to positive infinity the quotients
Py,
Q!(E;)!If il 1, 2, 1
approach respectively
ﬂ(xl)
[ = C .
( ): 2, 3, i,
while
P (£n+1)

QJI ( En-{—l)
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’-;fands to 0. Nowtakeov = £ — eand » = § + ¢in (17) and let the posi-
tive number e converge to 0. Taking into account the preceding remarks,
we find in the limit :

— Po(z1)
ot =0z 2o
x<f
P n(zl)l
el +0 = 25y ~
13-4
whence again ,’\t\'
'S\
Po(xr) ,.,’;‘\"'
o(® 2 25 oA
Tt . m\\.
Pﬂ(xl) \;
’P('E) = m{th (271) \'
But these inequalities follow directly from (ﬁ) by taking v = £
Since s
WO, dbla Tary.or
W +0) < '@*b aﬁ)‘/ ‘%3%3)
it follows from 1nequal1t1es {18) that
P
O\g\ gp(‘f)) \b(ﬂ —-0) = Q:((?)
On the other hantl\ One easily finds that
0, N
ROY_ ,
.\éf Y T @l ()? + (U)Qn—x(v) — Q1))
But ;‘ei;éi:'ring to the end of Bec. 4,
\"‘\; N/ n
QD)) — Qs al) = 3, 2l
=1
whence )
i 1Qa(0)? + QL)@ (v) — ¢ (9)Qa0) = Qha()Qa0) — QL (#)Qns(2).

TFinally,

05 o) — ¥ -0 = Wﬁ‘

If @47} is another distribution function with the same moments

Mo, W1, Ma, « « - Man
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we shall have also

1
0 < pule) — ¥l — 0 = 5 I GY — QL

and as & consequcence,
(19 loi(@) — @) = xa(¥)

—a very important inequality. Here for brevity we usc the notatian

=

x0) = G — L D

7. Application to Normal Distribution. An in‘lpOT{[ﬂl}QT}" particular
case is that of a normal distribution characterized by the'f wnetion
NN

1o
plz) = —f e du.
VIJ e N

In this case it is easy to give an explicit ex}ﬁzseicn of the polynomials
Q.{z). Let

)" “'
et
wm@?ry%b%tgm

Integrating by parts, one can,,{)r{;;'e that forI = n — 1

&)
\ﬁ; ezt (r)de = 0.

Hence, one may cqnf;kidc that Q.(x) differs from H.(z) by a constant
factor. Let e

e/

)
£\ Q.(z) = e Ha(z).
To detergr,l.i:& Cr, we may use the relation

\:\ H.(x) = —2H._(z) — 2(n — DH,. ()
b 3

w}hth can readily be established., Introducing polynomials @, this

relation becomaes

Cn [

Qulz) = —22—2Qn 1(z) — 2(n — 1)—"-Qn2(2)-
- | Cn—g
Hence,
[ 1 Cn
Ty T L,y B0

Since Holx) = Qolz) = 1, we have o = 1; also

1

a1 = —
Mo

=1 = —-2%
%o
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whence e1 = —14. The knowledge of ¢ and ¢: together with the relation

Cn—2
Lp = ——
T2 — 2
allows determination of all members of the sequence ¢y, ¢s €4 - . . -
The final expresstons are as follows;

Com = m . N - —
2rn.1-3-5 . (2m — 1) A
cﬁm+1=§m+1.2.4.6...2m' "\“\’
Trom the above relation between ITa(z), Hua(z}, H. »(x) argd‘ﬁwmg to
the fact that 77.(z) is an even or odd polynomial, accurdmgsas 18 even or
c<dd, one finds . m\
Honl0) = (—2)m 1:3°5 - (203 1),
. ) A
while another relation ¢*{

II; (x) — 2??.}}-,3_\1 (ﬁj,

following from the deﬁnition osbli_la l(xi)lara b ;&
or g in

tmt(0) = (=2)%¢ 1«3 5+ - (2m —1).

These preliminaries bemg“gstabhshed we shall prove now that

/N
€ 3
N\

x(0) = Cn?%nﬂ (H, ) H «a(j) H ") Hays(2))
attains its mammum,’for p =0 Let
x~\i. Q(E’) = n+1(”)Hﬂ(¢’) - H:n(t')Hn+l('v)-
Then, ta‘}i%“énto aacount the differential equation for polynomials
ENORNS
Q HY (@) = 2H@) — 2nHa Q)
we find that

¢ _ 5.0 — 20 Huu ).
dy
On the other hand,
- 4 2.0
@ = — Bl g 7,67

and denoting roots of the polynomial Ha41(2) 10 general by &

d H. (‘U) (8
dv Hn.q-](‘-'a‘) EH:;-H(E) (v — 2)2
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Consequently
(8 1
0 = Huplo)f EH’+1<z) v =5
Again
Hﬂ(E) v — £
Ha) o) = Bl 20777065 e
and so N\
— :\
99 o (e)? _H”(E) B S : S22 1C) D NIPRY-

dv H B -5 a+1 -J(wrs)-

Roots of the polynomial H.4i(2) being %ymmvtrwally located with
respect to 0, we have: \

Sty E-——z«z—

and finally
d_g 1(1’) E:
dy £
Hence
daQ . Q) an .
R»v->0 1f’i“¥?~<0, o < 0 if >0

\"
that is, 0(v) attains 1t3ma,x1mum fore = 0 and x.(t) attains its maximum

for v = 0. Refprr'mg "to the above expressions of Cam, €2mp1; Hom(0)
HY 1 (0), we ﬁn(l»t‘hat

\» B 2-4-6 - 2m
xan(®) = g5 (2m +1)
:‘.\\; 2:4-6 - - 2m
\\ _ xam1(0) = 357 (2m 1)
In Appendix I, page 354, we find the inequality
246w 1 e
1°3:5--@m— U ~/dmi2 2

whence

2:4:6-- - 2m <\/ T
3577 (2m+1) 4m + 2
Thus, in all cases

X S %0 < \JZ
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whence, by virtue of inequality (19),

o6} = 00 < A

Thus any distribution function ¢1(v) with the moments

135 (2%—1
- -

My = 1, Map—1 = 0, Mok (k = n)

corresponding fo

i \
v} = —= e O\
¢(v} 1/1_rf— e & )

differs from ¢(#} by less than “\
T 7 ’
0 O
Since this quantity tends to 0 when n increases iny itely, we have the
following theorem proved for the first time byf&éhebysheﬁ :
The system of infinttely many equations NN/

IECRRE J S sy g rf oot =
1:3:5--- (%1
/% _ 2;‘

=123 ...

N ,
uniquely delermines a neper}lecreasmg Function ¢z} such that o(— =) = 0;

namely, O™
N/ z

g 1
= e du.
\\ (%) 2.

8. Tshebj'r}\heﬁ-Markoff’s Fundamental Theorem. Whenamass =1
is distrib@éﬂ according to the law characterized by a function F{z, A)
deperfdihg upon a parameter X, we say that the distribution is variable.
Notwithstanding the variability of distribution, it may happen that its
moments remain constant. If they are equal to moments of norm.al
distribution with density

e—:!

VT

then by the preceding theorem we have rigorously

Fz, A = % f * evidu

no matter what X is.
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(enerally moments of a variable distribution. are themselves variable,
Suppose that each one of them, when M tends fo a certain limit {for
instance <), tends to the corresponding moment of normal distribution.
One ean foresee that under such circumstances F(z, A} will tend to

1 x
2} = —= e du.
‘P( ) \/1; .
In fact, the following fundamental theorem holds: ~
Fundamental Theorem. If, for «¢ variable distribution characterized
by the funelion F(x, ), O
. °\
o 1 Y % e
lim 2*dF(z, A) = —= e=zkdx; A S
f — @ ( ) ‘\/;l' - m . :’.

Jor any fixed & = 0, 1,2, 3, . .. then

him Fp, ) = N g *'dzx; ‘1\\';\—!» ]
! \/1_1' — m "’1\“
uniformly in v. R W
Proof. Let www dbraulibrary org.in

Mo, M le, . . . May

be 2n + 1 moments corrfis;it;nding to a normal distribution. They
allow formation of the pol\y;lomials

Q). ), . . - 0uLe) and Qo)

and the function deésignated in Sec. 6 by y¥(x). Similar entities cor-
responding to 'Qi‘é“variable distribution will be specified by an asterisk.
Since \J
R
N mi—my  as A—

AN
and #hiee A, > 0, we shall have

' A¥ >0

for sufficiently large A. Then F{x, A} will have not less than n +1
points of inerease and the whole theory can be applied to variable dis-
tribution. In particular, we shall have

0= o) — ¥(v — 0) £ xa(¥)
(20)
0= Flo,N) —¢* — 0) = x30).
Now Q%(x¥s =0, 1, 2, ... 1) and Q*() depend rationally upor
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mik=0,1,2, ... 2n); hence, without any difficulty one can see that
Qf(ﬂ:) —-'}Qi(x); & = 0! 1, 2) v R
Q*(=) — Q(x)

as X — o« ; whence,

Xn (@) — xa (o).

Again
N\

e — 0) > ¢z — 0) n +

as A — co. A few explanations are necessary to prove this. At, ﬁ“r;t let
.(v) # 0. Then the polynomial §(z) will have n 4 1 rop&g‘ it

< <h< - <l »
Since the roots of an algebraie equation vary coi:a;i‘nuously with its
coefficients, it is evident that for sufficiently la}'@} the equation

Q*(x) =10 ”’x\ W

will have n + 1 roots: R v

LR e
and £% will tend to & as A~ . ‘.’l’,:]'f;t'his case, it is evident that y*(v — 0}

will tend to (v — 0). If @.{d) = 0, it may happen that {¥ or £3,, tends
respectively to — o or + &8s A — «, while the other roots tend to the

roots L\

N

\\

of the equation/y™

\:\ Qa(z) = 0.
But theft;é:rms in ¢*@ — 0) corresponding to infinitely increasing roots
tcnd'\Liu.O, and again

v*o — 0) = ¢z — 0).
Now
XR(v) < Jﬁ%

Consequently, giveﬂ an arbitrary positive number ¢, we can select 7 so
large as to have

xalt) < J%:; <e
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Iaving selected » in this manner, we shall keep it fixed. Then by the
receding remarks a number L can be found so that

x*() < \/;i; < €
(o — 0) — ¥*(o — 0)] < ¢
or » > L. Combining this with incqualities (20}, we find
v, 2) — o)l < 3e N\

or » > L. And this proves the convergence of F(v, N) to o} {01' a
ixed arbitrary ». To show that the equation N

« \/
\
.

? £ N

lim Fp, N} = W e=dx \

M'\i.’
aclds uniformly for a variable » we can follow a very Simple reasoning due
to Pélya. Since o — ) =0, {4+ o) = 1 anck\go(x) 14 an increasing
function, one can determine two numbers aq a.nd @, 50 that
T for =
ol ) o vgibz‘auhﬁrary org.in r=a

1—ol2) 1 — plagiR 2 for  z 2 a,.
Next, because o(z) is a continubus function, the interval (as, a.) can be

subdivided into partial 11\t§1§\vals by inserting between g, and ¢, points
iy << G < -t <an_1

,\’ 0 < glaz) — olax) <3 3

fork =0,1 %\ — 1. By the preceding result, for all sufficiently
large A
\ Flag, \) <z: 1 — Fla, A < &
\ 3 2 ? Lt 2
and

\Flaz, N) — olag)] < fz-; E=1,2 ...n—1.
Now consider the interval (— w0, g}, Here for » < a
0= Plo, ) < 5 0<@(a)<%

and
F@, ) — o)] < e
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For » belonging to the interval (8n, + )

0S1-Fln<E o<1—¢(a)<‘§,

whence again
P, — o) < e
Finally, let
B2 <o (k=012 ...0—1) N\
Then f\
Plo, %) = o(e) = Flan, V) — plon) = “
= [Flan \) — ole)] + [saf(aa} ~ o{ter1)]
Flo, ) — o@) £ Flag, ») — i"(ak)
= [Ftr1, ¥) — @(@rs)] ‘:f‘hiﬂ(akﬂ) ~ o{ax}].

But \
N
Flaw, M) — ola) >

s./.,

[ £ &/
- §; @(ak)'\' oldrp) > __§e

Flawp, 7\) \ujovgakﬂ]grauﬂhtary(p (gaﬁ"‘f)l o{aw) <
whence
—e <f(9 ?\) - ¢lt) <e
Thus, given ¢, there emst,g“é\ number L{¢) depending upon ¢ alone and
such that \\
O Fo, N — o) < e

for x > L(e) no Ratter what value is attributed to ».

The fundarg&ital theorem with reference to probability can be stated

as follows ;N\
Let s\ be a stochastic variable depending upon e veriable positive m!eger

.. I j"\t}‘re mathematical expectatton E(s¥) for any fixed k = 1, 2, 3,
te-n{s,, s n increases indefinitely, lo the corresponding expectation

E(z*) = % f _mmz*e-ﬂdx

of @ normally distributed variable, then the probability of the inequality
Sy ¥

tends to the limit
_1. ’ e dr

"\/ﬂ:—n

and that uniformly in 2.
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In very many cases it is much easier to make sure that the conditions
of this theorem ave fulfilled and then, in one stroke, to pass to the limi}
theorem for probability, than to attack the problem dircctly.

APPLICATION TO SUMS OF INDEPENDENT VARIABLES

9, Let 21, 25, 25, . . . be independent variables whose number can be
Increased indcfinitely. Without losing anything in generality, we may
suppose from the beginning

E(@) =0; k=12 3 .... O
We assume the existence of R, \:\
) = b R
for all k =1, 2, 3, . ... Also, we assume for somf ;‘l;osi}:-ive é the

AN

existence of absolute moments
Bl = w2,k =1,2,3,50 .
Liapounoff’s theorem, with which we deal‘t;\aii: length in Chap. X1V,
states that the probability of the inequality )"
21 _tg\éz}w;iibraullbﬁé}ngL‘g.in
\/2_3: <t

~

where £
Bn,={x§f\+bg+ S S

tends uniformly to the hn}t

O 1
Q) —_— s o7
O Vr ).
as n — w0, provided
.\~f S S a2 e SR ol 12 e
RS 5 — 0.
L N 14—
\ 3 B, 2

Liapounoff’s result in regard to generality of conditions surpassed by
far what had becn established before by Tshebysheff and Markoff, whose
proofs were based on the fundamental result derived in the preceding sec-
tion. Since Liapounofi’s conditions do not require the ecxistence of
moments in an infinite number, it seemed that the method of moments
was not powerful enough to establish the limit theorem in such a general
form. Nevertheless, by resorting to an ingenious artifice, of which we
made use in Chap. X, Seec. 8, Markoff finally succeeded in proving the
Jimit theorem by the method of moments to the same degree of generality
a8 did Liapounoff.
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Markoff’s artifice consists in assoclat
ing with the variable 2, t
variables z, and v, defined as follows e 2 two new

Let N be a positive number whmh in the course of proof will be
selected s0 as to tend to infinity together with n. Then

Ty = 2, e =0 i izkl <N
Ty = 0, ?]k = if |3k| > N.

BEvidently 2, a1, y: are connected by the relation

Ze = 2y + Us A
whence AN
(21) E(w) + E(ys) = 0.
Moreover M‘\g.'

Bled) + BD = BeD = b NN
22) R

Hloif#*s + Bjyfets = B upes,

as one can see 1mmedlatemjm§hﬁ;d@ﬁbmﬁ@1mf 7 and ¥
Since #; iz bounded, mathematlcal expectatmns

W (&)

exist for all integer exponentsi\—- 1,23, ... andfork=1,2,38,....
In the following we shall ng& the notatlons
]E(x*)f—c 1—1,2,3,...
U o o Lo = B
}2-1-5) douBH b - e = O,
Not to Qb%ure the essential steps of the reasoning we shall first

establish atfew preliminary results.
Lemm) 1. Let qi represent the probability that y. = O; then

Cn
@+ at +9.’N—Nz+a

Proof. Let ¢u(z) be the distribution function of 2. Since y = 0
only if |2 > N, the probability g is not greater than

[Tania) + [ denta).
On the other hand,
[ aleridouta) + [ el odouta) < B
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But

— N -« —N o
[Miarndat + [ ldaE = 80 [ Tdn + [ da@]

whence

- (2+5)
0s [ dnt) + [ det) 3 Hi

The inequality to be proved follows immedately. \
Lemma 2. The following inequality holds: O\
A\
B! Cu O
> =2 s %
1z B =1- BN N
Proof. From \:..‘:\g’

E1yki2+5 < #(H-a) \'

whieh is a consequence of the second equatwn(QZ) it follows that

o

, Ls-ha) 3
E(y) =
WWW dbraul’f Lary org.in
The first equation (22) ‘J;‘ .
cg\ﬁ- By =
gives \w
\\b S o> b gt
p \ o ‘% * N
Taking the sw@:fbr E=1,2,3,...n weget
& , Ca
&*.\ B,z B,z B, — N
AN
W]:\\:e'
B! C
> =t — z .
1 = Bﬂ g 1 .BnNﬁ

Lemma 3. Fore = 3,
C(ls) + c(gel + PN + CS:) é (E)B;Z

&
2 "
B: .

Proof. This inequality follows immediately from the evident
inequalities ,
| 4 £ Elnl* £ NE(&f) < N,
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()"

Lemma 4. The following inequality holds

e 4 ef + - - - + v
B]

A

Proof. Bince
E(zg + E(ys) = 0,
we have
A’ = B = |E@w)| < Ely-
On the other hand, by virtue of Schwarz's inequality

N\

[Elys) + Elys) + - - + Elgall = (n'f;:
é (ql + gz + "t + QH)EE'{&’E) é Bnﬁ%!
ks 1

ANY;
whence the statement follows immediately. \‘\
If the vanable integer N should be subjéct to the requirements that

both the ratios

in
N N B.

should tend to 0 when n incTegses indefinitely, then the precedirllg lemmae
would give three imporpant coroliaries. But before stating these
tain the possibility of selecting N as required.

ol Y
wiwwCbrauli ﬁ:ﬁri{ .0&_2

corollaries we must as
It suffices to take O

A%/ 1

..\%\'"’
Then
.~'§ N”__ o B C. E_2+_a-—>0
™ = +3 []
:"\". N Bﬂ Nz B'l‘+§

NG
‘ by\i;'tue of Liapounoff’s condition.

Also 0 .
3
Cn ___C;;&)m,- et
B,;Né B:+§ L]

will tend to 0. By selecting N in this manner we can state th

corollaries: .
Coroltary 1. The stum

gt + ¢

e following

tends to 0 as n — <.
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Corollary 2. The raiio

B,
B.
tends to 1.
Corollary 3. The ratio
6&‘} _l‘.cfse] + P + ctl‘u?
* O\
B:

L\
tends fo O for all positive infeger exponents ¢ except ¢ = 2.
10. Let F.(!) and ¢.(f) represent, respectively, the pg'dig:ﬂ;ilitius of the
inequalities AN °
o
ZL+ 2 4+ +zn<t.'
2B, A
Tyt a4+ 00 -{::Q.;.( .
2B, NV

By repeating the reasonimmmg;b@mx, Sec. 8, we find that

Ful) — oslOVS G+ @2+ =« + gn
Hence,

N\
. :\J
lim (Fi{‘&)”;- du()) =0  as n— ®
by Corollary 1. ~Itfx suffices therefore to show
AN/
O )

p o '

bt} — “\7:f e~dy a8 n— o,
N/ Ty -

™\

and tl:p?’t can be done by the method of moments, By the polynomia-]
thedrém
($1+$2+ S

ay" _ m! Sa,ﬂ, s R
2B. ) B Ea!ﬁ! PN m

where the summation extends over gl systems of positive integen
a2 B2 - Z Xsatisfying the condition

and Sazﬂ, .. .» denotes a symmetrical funetion of letters z;, 2, . - + ¥
determined by one of its terms

o S
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if 1 represents the number of integers o, 8, . . . M Since variables
€1, ©2 . . - Lo are independent, we bave
s m . m! G.
E($1+$2 *’r___ +$u) _ m 8. -
187« « w m
+/2B. Ea-ﬁ- Al SBE

where Gag, . . . » is obtained by replacing powers of variables by mathe-
matical expectations of these powers. It is almost evident that

\Gup, | LA+ o of P+ - tep &0
n = 3 8 A o
B,? B.? Ba? <O
e® 4+ P + .:‘“.} 4 e
PENY )
ANE S
4797
o\ NP .
Now if not all the exponents o, B, . % are =2\(which is possible

only when m is even), by virtue of Corollary 3 the nght member as well as
Gus, - -3 N \‘

N\ W

B L Y
wwrw.dbraulibr a*ry brg.in

tends to 0. Hence

Z1 + Tay + -0
(=L )
il m is odd. \\
But for even m we have
(23) ( %M+ ) -t
- 2 B“‘:E

,\

Let ug’ consxder now (m being even)
O

BIN\E 2 4 o D Hup o -0
(5 - (= St

B2

where summation. extends over all systems of positive integers

Azpz 20
gatisfying the condition

P
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ind Hiagy . ..« I8 8 symmetric function of ¢{®, ¢i®, . . . ¢{? determined by
fs term
M . . (),
- being the number of subseripts X, p, . . . @. Apparently
Hag o (G N+ - 4 2P
m B
B2 A
(G20 + (@) + - - ()
B: ¢\ T
. N T
Besides B
o € Nt (6P) < N2 £ No-fhe
and ~.'\\\’
(c(lm)e + (cfgm)s 4o + (05‘2})e < ) —1
Be = x'%“ —
fe>1 Thus ,*Lz\
Ha
wmllﬁgry.OL‘g.in
Bn%’: -
f not all subseripts A, &, . . . ware equal to 1. It follows that
"\

N

But by Comllary 2 ‘\ g

"\~ Sa_y

nd evidensly Hy,y, . . . 1 = 6oy, . . . 5. Hence
AN

”'\: w4
\; (%)!Gz,z, ﬂ . 2_}1
B,z

ind this in connection with (23) shows that for an even m
E(xl 4z +2-B- ' +xn)m__)_yz!__
n m
L iy |
2 (2).
Finally, no matter whether the exponent m is odd or even, we have

lim E(EL%B + xﬂ) = % B eme—id.
n TJ—=
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Tshebysheff-Markoff’s fundamental theorem can be applied directly
and leads to the result:

Jim ¢,(8) = % g

TS~ =
uniformly in Z.  On the other hand, as has been established before,
Lm [Fo{f) — ¢.(8)] =0

uniformly in {. Hence, finally &N\

. _ _L P O
lim F.{t) ‘\/;j:. ﬂg“ dz :".\:\\..“,
% N/
uniformly in £ N
And this is the fundamental limit theorem with Llapounoff’s condi-
tions now proved by the method of moments. 'Th’xé‘ proof, due to
Markoff, is simple enoughk and of high elegance. However preliminary
considerations which underlie the proof of the; shmdamental theorem,
though simple and elegant also, are rather Iong\‘Nevertheless we must

bear in mind that they are not only useful i eonnection with the theory

of probability, but they baye c%‘?g;&ﬂglggﬁ{t%{lgﬁ r1]11 other fields of analysis.

3
VW3



APPENDIX III
ON A GAUSSIAN PROBLEM

1. In a letter to Laplace dated January 30, 1812,' Gauss mentitus 2
difficult problem in probability for which he could not find a~psrfcctly

satisfactory solution. We quote from his letter: A\
Je me rappelle pourtant d'un probléme curieux duquel je mg;gﬂﬁs ocoupé il ¥
a 12 ans, mais lequel je n’ai pas réussi alors 3 résoudre & ma gdtistaction, Peuat-

étre daignerez-vous en occuper quelques moments: dans cqg{s&jé SUI% SUT (jle vous
trouverez une solution plus compléte. La voiei: Soit M<uhe quantit¢ inconnue
entre les limites 0 et 1 pour laquelle toutes les valeurs @nt ou également probables

ou plus ou moins selon une loi donnée: qu'on la supfosé convertie en unc fraction
continue A\

P
"

Mz“l_, 1’:.'“,

W w?dbta@jjbirary .Org.in

™
Ny Y

Quelle est la probabilité qu’en siarrétant dans le développement 4 un terme fini
a®™! a fraction suivante C

R 1 .

a(n+l) +
' < a(n+2) + . .
K7,

soit entre lesg’ ifaites 0 et 27 Jo la designe par P(x, x) et j'ai en supposant toutes
les valeurgﬁgﬁ‘lement probables .
&«\:.\':.’ P(Os %) =z,

R, «) est une fonetion transcendante dépendant de la fonetion
1 1 1
1+2+§+"'+5

que Euler nomme jnéxplicable et sur laquelle je viens de donner plusieurs re-
cherches dane un mémoire présenté & notre Société des Sciences qui sera hientét
imprimé. Mais pour le cas ou # est plus grand, la valeur exacte de P(r, ) semble
ntraitable. Cependant j’ai trouvé par des raisonnements trés sinples gue pour
» infinie
Yog (1 + )
P = — 1
(ﬂ‘} x) log 2
1 Gause’ Werke, X, I, p. 371.
396
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Mais les efforts que j'ai fait lors de mes recherches pour assipner

P(n, 2} — i—-—-—-—-—Uglt();;- 2

pour une valeur trée grande de n, mais pas infinie, ont é6¢ infructueux.

The problem itself and the main difficulty in its solution are clearly
indicated In this passage. The problem is difficult indeed, and mo
satisfactory solution was offered before 1928, when Professor R. O.
Kuzmin sueceeded in solving it in a very remarkable and elegant way, O

2. Analytical Expression for P,(z). We shall use the nonat'{on
P.(z) for the probability which Gauss designated by P(n, z). The first
question that presents ifself is how to express Pa (z) in a propenanalytical
form. Let &(vs, v, . . - ¥a, 7) be an interval whose eq&"ﬁoints are
represented by two continued fractions: A4

1

+ Uy + 2 .
with positive integer imwmptbtaumm’giejiiﬁ-gmvz, . . . s, While z is a
positive number =1, Two such iptervals corresponding to two different
systems of integers i, v, . . . #vand o), 93, . . - v, do not overlap;
that is, do not have commondinner points. For, if they had & common
inner point represented veanirrational number N {(which we can always
suppose), we should haye for some positive =’ < 1 and ' <1

. )
=, 1 and = 1)
”1+1_:;+-’ ”‘\'*'%a.{.. +1
. . ""3 . 5;

1,00 S
= - AW = hall
"I - A 1
=T e
Butih};,% 18 impossible unless o) = 1, ¥z =V - - + vy = Un.

h

“Anumber M being selected at random between 0 and 1 and converted
into a continued fraction

1
mw=L 1
-+ ta + E
if the quantity £ furns out to be contained between 0 and £ < 1, M)mur:
belong to one (and only one) of the intervals 3(vi, ve, « « - Ym ¥) €O

le systems of 7 positive integers

i sib
responding to one of all the possi bability and

ta, ¥2, - - « Un. Sinee M has & uniform distribution of pro
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nce the length of the interval 5(vy, o3, . . . ta, T) I8
1 1
1 1
(-5 1’1+v—2+_. . !?1+§'2+_.
T e

e required probability Pa(z) will be expressed by the sum

1 1 ¢
2] —_ —1yny — JE——
(%) 2( 1) A ‘i“_l th +i AN '
1,74 - « . P s + . ) 1 Vs _I_ . ) '\' \..' 1

. + Y o’ _]_u_l

v, -+ A\ Un ]

xtended over all systems of positive integers vy, vz, . \ @,. In general
4, \J

g—f‘=i—+l =3 . . . n)
: ! vy 4 - . 1 ‘..:\"
-+ 5 O v
e a convergent to the continmdfﬂhﬁi@1'ary.01'g.in
1 &N
L 1 O
" +-‘b‘; + .
\ L4 1,
) Va
Chen the above expression for P, () can be exhibited in a more convenient
orm: \
, 738 Pot 2Py P
1 Boz) = -1 n[ﬂ_w»_—l - _'1].
. ) :§’§:E) . QE ( ) Qn + xQn—l Qn

By tllf\s:v'gél:j’ definition of P.(z) we must have P,(1) = 1; hence the
.mpO{taﬁt relation

r 1 o
k2) EQn(Qn + Qﬂ—l) a 1'

This result can also be established directly by resorting to the original
xpression of P,(1) and performing summation first with respect to v1,
then with respect to v, ete.

Relation (2) can be interpreted as follows: Let & in general be the
length of an interval 8(vy, vs, . . . v, 1). Then

=1

summation being extended over the (enumerable) set of intervals 3.
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3. The Derivative of P,(x). In attempting to show that P.(z)
tends uniformly to a Hmit function as #n — ® it is easier to begin with its

. derivative p,(z). Series
( £ n——.{)z

obtained by formal derivation of (1) is uniformly convergent in the
interval (0, 1). TFor

O\
Q > QN + Qn—l
" 3 OV
o\
whence _ O
1 2 Y
020 < 0.0, ¥ 0.3 ¢
and the series D
S tad
0@ + D)
is convergent. Hence Wwvr.dbt-au[ibrﬁl‘??ﬁrg.in
dPﬂ(x) _ :"; oy 1 .
P, E @+ 2@.)?
. i\
Since ’.&: )
P, b> = 9,01 + Qa—s
we have \,'
:.:\“’ 1 1

?n{’(lk}' 2 1 2 {‘U,, + x)g

»".\\ PLO% o e - PR Qﬂ‘-‘l + 7 + xQn-—-S
H . . Vs-1 for constant

and,gﬁégftfi'ming summation with respect to v, va, .

Un
_ 1
2 : y = pn—n(m);
Qn-—?.)

01,08 4 0 - sn_x(Qn-l + n + x

pa(a) = Ep(ri—az)@-j—a

=l

1

whence
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else

) palx) = j?’n—l(v—j_—g;)ﬁﬁ)?

t=1

an important recurrence relation which permits determining com-
etely the sequence of functions

Pl(ﬁ); ‘pg(.‘.t), L O
arting with pe{z) = KoY

4, Discussionofa More General Recurrence Relation. In dbscusmng
lation (3) the fact that pe(x) = 1is of no consequence. }&Q may start
ith any function fo{z) subject to some natural hmltatm‘ms and form a

quence | ~\
fl(x)afﬂ(x):fﬁ(x)! . ,\;
v means of the recurrence relation \ ‘
4 n
) JAa) = E{"H whr)r(y ok g}
The following properties of .’((m) follow easily from this relation:
a If {w, .
\™ a
‘ Jolz) = iTa
P \ J
ben Ve \d
Y
,>\ fﬂ(x) = + $; n=1,223,
For ~\"\,

- 1 1 _ o
f‘{z)“‘g(v+x_v+:c+1)”1+x

whence the general statement follows immediately.

b If
1 = fo(x) = ﬁ_fz
then
M
1 + = fﬂ(z) <' + z



APPENDIX 111 401

Follows from {a} and equation (4) itself.
As a corollary we have: Let M, and m, he the pree
lower bounds of precise upper and

U+2hE =013 .. )
in the interval 0 £ 2 = 1. 'Then

MizMyzM, 2 ..
My Z M E M S - Q)

¢. We have ne.Y

Llfﬂ(x)dx = jﬁlf,‘_l(y 41_';)(” i’fx}g - "(J}‘:

< R
1 = J;wfwl(i")g% = fqi{ahlt;t)dw = \LlfU(ﬁ)dz'

d. The following relations can easily bg,e%lﬁlished by mathematical
induetion: QO

.

5 = SABbiE el

B, ¥ 2P, 1
fﬂn_(x) = Ef: . xQn_1)(Qn -+ xQn—»l)z

7

W Pn + xPn--l 1
fﬂﬂ(w) : ,EZ“(Q" + me-l) (Qﬂ + an—l)z.

&
Let us suppose. {ic,\,;'that the function fo(x) defined in the intery al

O 0=zl
possesséé}'é,'derivaftive everywhere in this interval and let 4, be an upper
bodud) of [f(x)] while M is an upper bound of (1 4 x)fo(x). Then by
property (b)
Jaldl S M5 o) 2 M5 w2, ., .

The function f,(z) represented by the series
| 1
&) = Do

where u stands for
P # + 2:«E)‘.n—-‘].,
@y + 2Qa
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18 & derivative; for the series obtained by a formal differentiation

filz) = Ef o(u) (Q E{_ﬁ xlé —2 EfO(u) (@ f;bﬂ—l) 8

uniformly convergent and represents f,(x). Now

Qs 1
@ + 2@~ @ .

QE > Qﬂ(Qﬂ ;‘ Qn-—l). . ‘\

[ence

2 B g sy < 4M2m;§:m =4
y virtue of (2). On the other hand, the ine'qﬁa:iity
bi(@n + @a1) = @alan + @ua)[{2a +»1}Qn-—-1 + Qn—s] >
WWW. dbréudlblar_y or g Qo1 (@1 + Qn2)
olding for n = 2 together with an‘evident inequality
,{‘gl(Ql +Qy =2

hows that \\

QORI+ Q) > (22
0 + 2Qu-)RS02 - Q2 >

*hus

Qn(Qn + Qn—l) . Qn(Qn + Qn—l) =
2 2
> 277Q.(Qn + @)

S) )
nd @éﬁ‘ﬂéi}u ently

(=1 _bio_
‘Efﬂ(u)(Q + zQ,_)* < gn—1"
Ience, we may conclude that
m = 2“ ; +4M

s an upper bound of |f;(z)]. Similarly, starting with the second equation
a (), we find that

m =5ty +4M



APPENDIX III 403

js an upper bound of | j'z,,(x)[, and so forth, In general, the recurrence
relation

= ;‘,’f:+4M k=123 )

determines upper bounds of

a@lh (2@ o)), - . . O
It is easy to see_t_hat in general O\
m < gty + g
so that for sufficiently large n L (s, '
. ue < B v
5. Main Inequalities. Let Y

@0(2?) fo{x) 1 + :U

Then www.dbrayli bg’gry,ol g.in

R O L
o g 1 1
- 2Ty > 127 gg T any

Bince the intervals deﬁned at the end of Sec. 2 do not overlap and cover
completely the whole mterva.l (0, 1}, we may write:

= *f Qﬁb‘)d@ 22‘[ @o(«’ﬂ)dz = Eaﬂo(ux)m-_];j-@;:j!

the latfef \part following from the mean value theorem and u; being a
numbk{ pontained within the interval 8. By subtraction we find

Tulz) — ~1> 22[600(“) tPn(uJ]m
and, since both » and u, belong to the same interval 3,
Mp 4 o #o -+ Mo

o) — o) > g0 QD T T T

Consequently,

@) = 7 1> H
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1 a fortiori

mg 1 — 2o + mo)

iate) > L
. follows that
) my = my + 1 — 277 (o + mo).*
1 & similar way, eonsidering the function I\

— _ﬂﬂw - SO\
Yo(2) = 1+ 2 folz) AN
nd setfing :“}’g
b =4, vlw)de, O

¢ shail have PN

-+ 2“”(pm+ Mu)
JHa) < —‘_’T"F“—*‘

/

‘hence W, dbraulrlu "ary.org.in
3) M,= M —31“-%2 "o + Ma).
urther, from (5} and (6) m<\
My —m = ﬂl\'\fz}??%o F 2 e + Mo} — 1 — 1L
ut
L4 0= 31og 200 — mg) = (1L — KMy — m); & < 0.66,
» that finally &
{ “1'— my < B(My — mo) + 27y 4+ M),
tartmg\\ufh Jalz), foulxd, . . . instead of fo(x), in a similar way we find

\ My —ms < k(M1 — my) + 273 (uy + M)
My — mg < B(M: — ma) + 277 (g 4+ M)

M, —m, <M, , — m,,_l) + 2y, 4 - Mﬂ_]).
‘rom these incqualities it follows that

l{{n — My < (.&q’fo — mo)k” - Z-mtl [,U.ak"_l + ,u;k"'_?' + SRR S TP +
Mot Mgt o - - - + Mol

Vithout losing anything in generality, we may suppose that fo{x) is &
ositive funetion. Then

* M, mq are used here with the same meaning a8 Ma:, m.; in See. 4.
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My £ My, pe < SMo k=123 ...)
at least for sufficiently large n. Owing to these inequalities we shall have

' A . 6M,
M . T n - " o S il N
(7 n < (M, — mo)k» + .110(2) + = pe—
This inequality shows that sequences

MIJ}M!. Mz_
mﬂémlémgé"'

approach a common limit a. The following method ean be used, t@ ﬁnd
the value of this limit. Let N be an arbitrary sufficiently la.rgemteger

and n the integer defined by R
nt s N < (n+ D% ,m}\"
Th \
en . p N
M < Mo\
1 +$U é.fmﬂ(x) = 1 + x?
and therefore W W dbrauhbl ary Lorg.in
M.
T3 Sf”@ ST+s
The ast inequality permits ,\p}j@enhng Ju(x) thus:
& fN(x) + (M, — mn): ial <1,
whence x'\

f f;.(x)'d‘.s: f )iz = alog2 +0(Mu—m), 1<,

and because M, — mn ultimately becomes as small as we please in
abschute value,

alog 2 = _]; Yo(z)dz.
Equation (8) shows clearly that the sequence of functions

fol@), fil@), fle), - - -

defined by the reeurrence relation (4) approaches uniformly the limit
~ funetion

142
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WETe

1 1
a = E)g_QJ; folx)dz.

6. Solution of the Gaussian Problem. It suffices to apply the preced-
¢ considerations to the case fu(z) = po(@) = 1. In this case My = 2,
o = 1, o = 0 and

N\
" log e &
A\
onsequently, WV

z‘s.“’
pae) = e ok Dl <1
A + ) log 2 d— & -2y

here n = [A/N]. 1t suffices to integrate this exR}essmn between limits

and ¢ < 1 to find \~
Pst) = log (1 +£) + )\(k“ } a3 ) A <t
log 2 ( (1% k)2~
W L dbraulfbl ary.org.in
L5 N — W * ~
log 1+

P“L‘(Q log 2

3 stated by Gauss. B&;o%over,

Pv(Q;th 1+ t)} < t(k“ + (1——%:—3)

¢
or sufﬁcient\lklarge, hut finite N.



TABLE OF THRE PROBABILITY INTEGRAL

1 2 "
Py = & df
\/QFJ;

7%

coossovonsvonessh

Boco0soEeEEe00o000080020S008000008

7 7

y’fé}opp’pmumuuu»—-.—un—-

# B z e
0.65 n.2422 1.30 0.4032
.66 0. 2454 1.31 0.4040
0.67 0.2488 1,32 0. 4066
0.68 02517 1.33 0. 4082
0.60 0.2549 1.34 0.4099
0.70 0.2580 1.36 0.4115
0.71 0.2611 1.36 0.4i31
0.72 0.2642 1.37 04147
0.73 0.2673 1.38 02162
074 0.2703 1.39 04177
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Probability infegral, 128
table of, 407
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application, 388
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independent, 171
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Vectors (see Limit theorem)
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